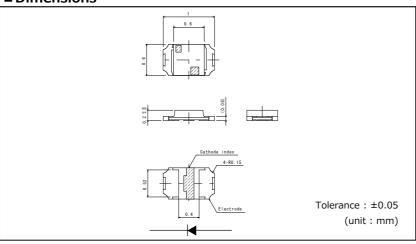
SML-P12x/P13x Series

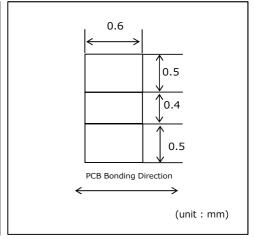
PICOLED[™] Data Sheet

■ Features

- Ultra compact, thin size 1.0×0.6mm
- Original device technology enables high brightness and high reliability
- Lead Free/RoHS Compliant.


■ Outline

■ Size


1006 (0402) 1.0 × 0.6mm (t=0.2mm)

■ Dimensions

■ Recommended Solder Pattern

■ Moisture sensitivity level(MSL): Level 3

■ Specifications

				Abso	olute Ma	ximum R	atings (Ta=25	°C)			Electr	ical and	d Optica	al Char	acteristi	cs (Ta=	=25°C)		
Part No.	Chip Structure	Emitting color	Power	Forward	Peak Forward	Reverse	Operating Temp.	Storage Temp.	Forward 1	Voltage V _F	Reverse 0	Current I _R			avelenç coordinat		Lumino	ous Inte	nsity I _V
			Dissipation	Current	Current	Voltage			Тур.	I _F	Max.	V_{R}	Min.*2	Тур.	Max.*2	I _F	Min.	Тур.	I _F
			P _D (mW)	I _F (mA)	I _{FP} (mA)	$V_R(V)$	T _{opr} (°C)	T _{stg} (°C)	(V)	(mA)	(µA)	(V)	(nm)	(nm)	(nm)	(mA)	(mcd)	(mcd)	(mA)
SML-P12VT (R)			50						2.0				625	630	635		25	60	
SML-P12UT (R)		Red	30						2.0				615	620	625		40	85	
SML-P12U2T (R)]			610	615	620		25	70	
SML-P12DT (R)		Orange											602	605	608		63	100	
SML-P12Y3T (R)			52						2.1				593	596	599		40	90	
SML-P12YT (R)	AlGalnP	Vallou	32	20	400*1				2.1	20	10		587	590	593	20	40	100	20
SML-P12WT (R)	AlGallir	reliow		20	100*1					20	10		582	585	588	20	25	70	20
SML-P12Y2T (R)						-	-40 ~ +85	-40 ~ +100				_	577	580	583		16	50	
SML-P12M2T (R)			54			5	-40~+85	-40~+100	0.0	1		5	573	576	579		10	25	
SML-P12MT (R)		Yellowish green	54						2.2				569	572	575		10	25	
SML-P13FT (R)			52						2.1	1			563	566	569		6.3	18.0	
SML-P13PT (R)		Green	52						2.1				557	560	563		4.0	10.0	
SMLP13EC8T			34						3.0				520	527	535		56	110	
SMLP13BC8T	I O-N	Blue		40	1] _	400		465	470	475	_	9.0	25	_
SCMP13WBC8W *3	InGaN)A/I- it -	33	10	50* ¹				2.9	5	100		(x, y)	(0.30,	0.30)	5	90	150	5
☐ SMLP13WBC9W *3		White											(x, y)	(0.29,	0.29)		56	150	

*1 : Duty 1/10, 1kHz *2 : Measurement tolerance: ±1nm, *3:Brightness for white color is noted with chromaticity coordinate(x,y).

■ Electrical Characteristics Curves

Reference

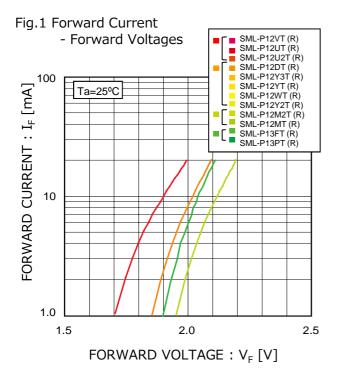
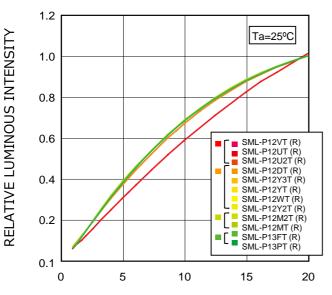
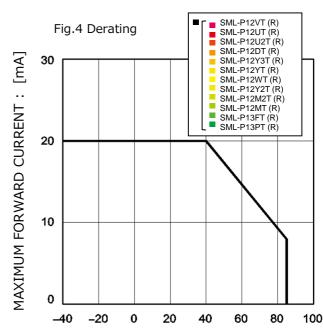
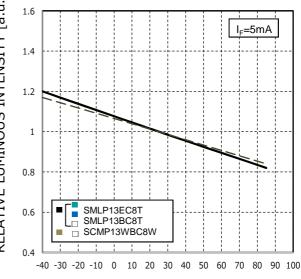




Fig.2 Luminous Intensity -Atmosphere Temperature RELATIVE LUMINOUS INTENSITY [a.u.] 1.6 SML-P12VT (R) SML-P12UT (R) SML-P12U2T (R) 1.4 SMI -P12DT (R) SML-P12Y3T (R) SML-P12YT (R) SML-P12WT (R) 1.2 SML-P12Y2T (R) SML-P12M2T (R) SML-P12MT (R) SML-P13FT (R) 1.0 SML-P13PT (R) 8.0 0.6 I_F=20mA 0.4 100 -40 -20 0 20 40 60 80

ATMOSPHERE TEMPERATURE: Ta [°C]

Fig.3 Luminous Intensity - Forward Current

FORWARD CURRENT : I_F [mA] AMBIENT TEMPERATURE : Ta [°C]


■ Electrical Characteristics Curves

Reference

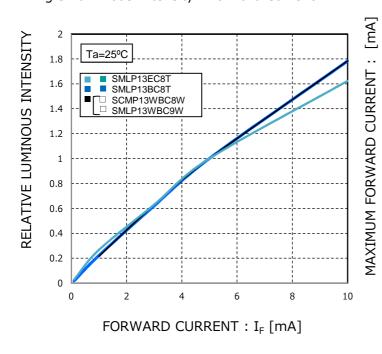
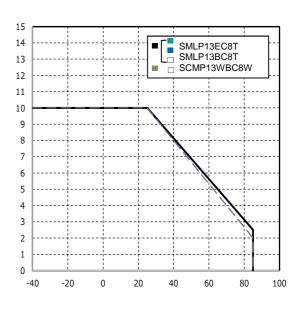
Fig.1 Forward Current
- Forward Voltages

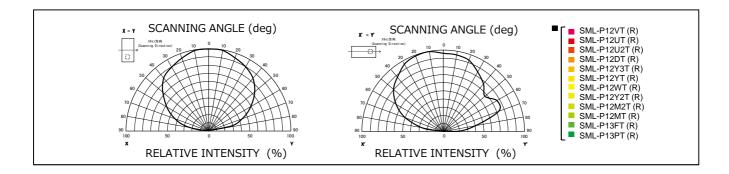
RELATIVE LUMINOUS INTENSITY [a.u.] 100 FORWARD CURRENT : I_F [mA] SMLP13EC8T Ta=25°C SMLP13BC8T SCMP13WBC8W SMLP13WBC9W 10 2 2.8 2.2 2.4 2.6 3.2 3.4 3.8 FORWARD VOLTAGE : $V_F[V]$

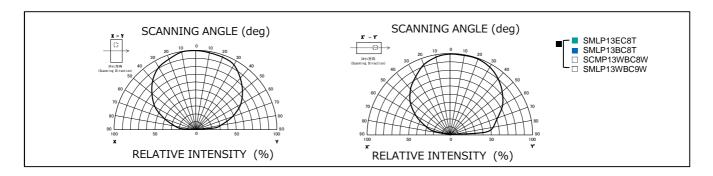
Fig.2 Luminous Intensity - Atmosphere Temperature

ATMOSPHERE TEMPERATURE : Ta [°C]

Fig.3 Luminous Intensity - Forward Current


Fig.4 Derating



AMBIENT TEMPERATURE : Ta [°C]

■ Viewing Angle

Reference

■ Rank Reference of Brightness*

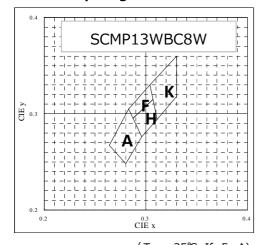
*Measurement tolerance:±10%

Red(V,	J,U2)														(Ta=25ºC,	I _F =20mA)
Rank	G	Н	J	K	L	M	N	Р	Q	R	S	T	U	V	W	X
Iv(mcd)	1.0~1.6	1.6~2.5	2.5~4.0	4.0~6.3	6.3~10	10~16	16~25	25~40	40~63	63~100	100~160	160~250	250~400	400~630	630~1000	1000~1600
SML-P12VT																
SML-P12UT																
SML-P12U2																

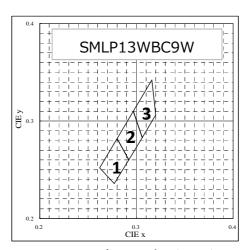
Orange((D)													((Ta=25°C,	I_F =20mA)
Rank	G	Н	J	K	L	М	N	Р	Q	R	S	T	U	V	W	X
Iv(mcd)	1.0~1.6	1.6~2.5	2.5~4.0	4.0~6.3	6.3~10	10~16	16~25	25~40	40~63	63~100	100~160	160~250	250~400	400~630	630~1000	1000~1600
SMI -P12DT																

Yellow(Y3,Y,W,Y2)	•	Ta=25°C, I _F =20	.UIIIA)
Rank G H J K L M N P Q R S T U	V	W X	Χ
Iv(mcd) 1.0~1.6 1.6~2.5 2.5~4.0 4.0~6.3 6.3~10 10~16 16~25 25~40 40~63 63~100 100~160 160~250 250~400	400~630	630~1000 1000~	~1600
SML-P12Y3T			
SML-P12YT			
SML-P12WT			

Yellowis	sh Gre	en(M	12,M,))											(Ta=25°C,	I_F =20mA)
Rank	G	Н	J	K	L	М	N	Р	Q	R	S	Т	U	V	W	X
Iv(mcd)	1.0~1.6	1.6~2.5	2.5~4.0	4.0~6.3	6.3~10	10~16	16~25	25~40	40~63	63~100	100~160	160~250	250~400	400~630	630~1000	1000~1600
SML-P12M2T																
SML-P12MT																

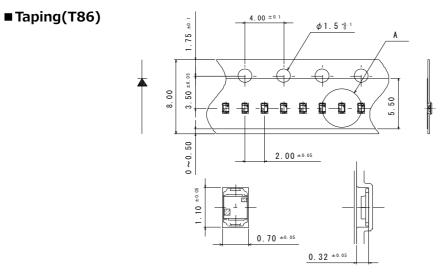

Green(F	F,P)													((Ta=25°C,	I _F =20mA)
Rank	G	Н	J	K	L	М	N	Р	Q	R	S	T	U	V	W	X
Iv(mcd)	1.0~1.6	1.6~2.5	2.5~4.0	4.0~6.3	6.3~10	10~16	16~25	25~40	40~63	63~100	100~160	160~250	250~400	400~630	630~1000	1000~1600
SML-P13FT																
SML-P13PT																

	Green(E	=)													(Ta=25°C	$I_F=5mA$)
ľ	Rank	G	Н	J	K	L	М	N	Р	Q	R	S	T	U	V	W
I	Iv(mcd)	0.9~1.4	1.4~2.2	2.2~3.6	3.6~5.6	5.6~9.0	9~14	14~22	22~36	36~56	56~90	90~140	140~220	220~360	360~560	560~900
ı	SMLP13EC8T															

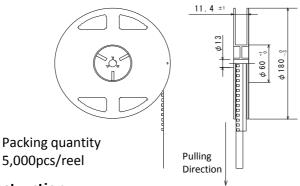

Blue(B)														(Ta=25°C	, I _F =5mA)
Rank	G	Н	J	K	L	М	N	Р	Q	R	S	T	U	V	W
Iv(mcd)	0.9~1.4	1.4~2.2	2.2~3.6	3.6~5.6	5.6~9.0	9~14	14~22	22~36	36~56	56~90	90~140	140~220	220~360	360~560	560~900
SMLP13BC8T															

White(V	VB)							(Ta=25°C	, I _F =5mA)
Rank	N	Р	Q	R	S	T	U	V	W
Iv(mcd)	14~22	22~36	36~56	56~90	90~140	140~220	220~360	360~560	560~900
SCMP13WBC8W									
CMI D13M/DC0M/									

■ Chromaticity Diagram

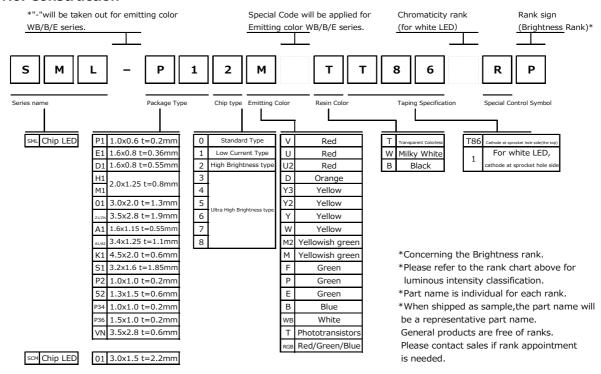


				(T)	a = 25	5°C , It	=5m
A	4	F	=	ŀ	+	ŀ	(
Χ	У	Χ	У	Χ	У	Χ	У
0.280	0.248	0.283	0.305	0.287	0.295	0.304	0.330
0.296	0.276	0.304	0.330	0.307	0.315	0.330	0.360
0.283	0.305	0.307	0.315	0.311	0.294	0.330	0.318
0.264	0.267	0.287	0.295	0.296	0.276	0.311	0.294
Meas	urem	ent t	olerar	ice : :	± 0.02	2	



1	2	2		
			,	3
х у	Χ	У	Χ	У
0.262 0.252	0.292	0.260	0.297	0.310
0.277 0.236	0.280	0.282	0.306	0.283
0.292 0.260	0.297	0.310	0.320	0.306
0.280 0.282	0.306	0.283	0.316	0.342

Measurement tolerance: ±0.02


Enlarged drawing of "A"

Unit:mm

Note)Tolerance is within ±0.2mm unless otherwise specified.

■ Part No. Construction

■ Packing Specification

Complying with IPC/JEDEC J-STD-033.

■ Precaution (Surface Mount Device)

1. Storage

If the product is heated during the reflow under the condition of hygroscopic state, it may vaporize and expand which will influence the performance of the product.

Therefore, the package is waterproof. Please use the product following the conditions:

·Using Conditions

Classification	Temperature	Humidity	Expiration Date	Remark
①Before using	5~30℃	30~70%RH	Within 1 year from Receiving	Storage with waterproof package
②After opening package	5~30℃	Below 70%RH	Within 168h	Please storing in the airtight container with our desiccant (silica gel)

Baking

Bake the product in case of below:

- 1)The expiration date is passed.
- ②The color of 5% and 10% on humidity indicator card is not green.

(Even if the product is before expiration date.)

Baking Conditions

Temperature		Time	Humidity	
60±3℃		12~24h	Below 20%RH	
Remark	•Reel and so please	 Bake products in reel. Reel and embossed tape are easy to be deformed when baking, so please try not to apply stress on it. Recommend bake once. 		

2. Application Methods

2 – 1. Precaution for Drive System and Off Mode

Design the circuit without the electric load exceeding the ABSOLUTE MAXIMUM RATING that applies on the products. If drive by constant voltage, it may cause current deviation of the LED and result in deviation of luminous intensity, so we recommend to drive by constant current. (Deviation of VF Value will cause deviation of current in LED.) Furthermore, for off mode, please do not apply voltage neither forward nor reverse. Especially, for the products with the Ag-paste used in the die bonding, there's high possibility to cause electro migration and result in function failure.

2 – 2. About Derating

It is considered that derating characteristics will not result in LED chip's electrical destruction. Even within the derating, the reliability and luminous life can be affected depending on operating conditions and ambient environment. So we would be appreciate it if you can confirm with your application again.

2 - 3. About product life

Depending on operating conditions and environment(applied current, ambient temperature and humidity, corrosive gas), decreasing of luminosity and change of chromaticity may occur even within the specification conditions.

Please contact our sales office if you use it for the following applications.

①It requires long luminosity life

②It is always lit

2 – 4. Applied Stress on Product

No resin hardening agent such as filler is used in the sealing resin of the product.

Therefore, please pay attention to the overstress on it which may influence its reliability.

<u>2 – 5. Usage</u>

The Product is LED. We are not responsible for the usage as the diode such as Protection Chip, Rectifier, Switching and so on.

3. Others

3 – 1. Surrounding Gas

Notice that if it is stored under the condition of acid gas (chlorine gas, sulfured gas) or alkali gas (ammonia), it may result in low soldering ability (caused by the change in quality of the plating surface) or optical characteristics changes (light intensity, chrominance) and change in quality of cause die bonding (Ag-paste) materials. All of the above will function failure of the products.

Therefore, please pay attention to the storage environment for mounted product (concern the generated gas of the surrounding parts of the products and the atmospheric environment).

3 – 2. Electrostatic Damage

The product is part of semiconductor and electrostatic sensitive, there's high possibility to be damaged by the electrostatic discharge. Please take appropriate measures to avoid the static electricity from human body and earthing of production equipment. Especially, InGaN type LEDs have lower resistance value of electrostatic discharge and it is recommended to introduce the ESD protection circuit. The resistance values of electrostatic discharge (actual values) vary with products, therefore, please call our Sales staffs for inquiries.

3 – 3. Electromagnetic Wave

Applications with strong electromagnetic wave such as, IH cooker, will influence the reliability of LED, therefore please evaluate before using it.

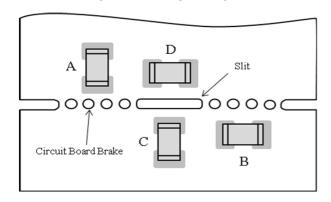
4. Mounting

4 - 1. Soldering

- •No resin hardening agent such as filler is used in the sealing resin of the product. Therefore, resin expansion and moisture absorption at humidity will cause heat stress during soldering process and finally has bad influence on the product's reliability.
- •The product is not guaranteed for flow soldering.
- •Do not expose the product in the environment of high temperature (over 100° C) or rapid temperature shift (within 3° C/sec. of temperature gradient) during the flow soldering of surrounding parts. In case of carrying out flow soldering of surrounding parts without recommended conditions, please contact us for inquiries.
- •Please set appropriate reflow temperature based on our product usage conditions and specification.
- •The max for reflowing is 2 times, please finish the second reflow soldering and flow soldering with other parts within the usage limitation after open the moisture proof package.
- •Compare with N2 reflow, during air reflow, because of the heat and surrounding conditions, it may cause the discoloration of the resin.
- •For our product that has no solder resist, because of its solder amount and soldering conditions, one of its specific characteristics is that solder will penetrate into LED. Thus, there's high possibility that will influence its reliability. Therefore, please be informed, concerning it before using it.

4 – 2. Automatic Mounting

4-2-1. Suction nozzle


Excessive load may cause damage inside the LED product, so select an optimal suction nozzle according to the material and shape of the LED product.

4-2-2. Mini Package (Smaller than 1608 size)

•Vibration may result in low mounting rate since it will cause the static electricity of product and adhere to top cover tape. Therefore, the magnet should be set on parts feeder cassette of the mounter to control the product stabilization. In addition, it is recommended to set ionizer to prevent electrostatic charge.

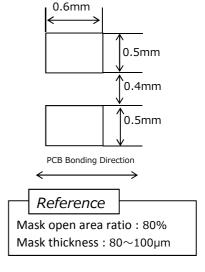
4 – 3. Mounting Location

The stress like bending stress of circuit board dividing after mounting, may cause LED package crack or damage of LED internal junction, therefore, please concern the mounting direction and position to avoid bending or screwing with great stress of the circuit board.

Stress strength according to he mounting position: A>B>C>D

4-4. Mechanical Stress after Mounting

The mechanical stress may damage the LED after Circuit Mounting, so please pay attention to the touch on product.

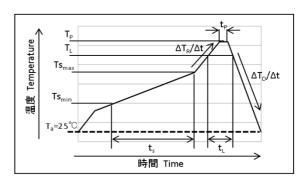

4 – 5. Soldering Pattern for Recommendation

We recommend the soldering pattern that shows on the right. It will be different according to mounting situation of circuit board, therefore, please concern before designing.

*The product has adopted the electrode structure that it should solder with back electrode of the product.

Thus, please be informed that the shape of electrode pin of solder fillet formation is not quaranteed.

The through hole on electrode surface is for conduction of front and rear electrodes but not for formation of solder fillet.



4 – 6. Reflow Profile

For reflow profile, please refer to the conditions below:(%)

■ Meaning of marks, Conditions

= Meaning of marks, conditions						
Mark	Meanings	Conditions				
Ts _{max}	Maximum of pre-heating temperature	180℃				
Ts _{min}	Minimum of pre-heating temperature	140℃				
t _s	Time from Tsmin to Tsmax	Over 60sec.				
T_L	Reference temperature	230~260℃				
t_L	Retention time for TL	Within 40sec.				
T _P	Peak temperature	260℃(Max)				
t _P	Time for peak temperature	Within 10sec.				
$\Delta T_R/\Delta t$	Temperature rising rate	Under 3℃/sec.				
$\Delta T_D/\Delta t$ Temperature decreasing		Over -3℃/sec.				

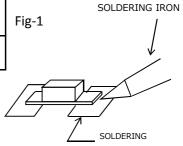
*Above conditions are for reference. Therefore, evaluate by customer's own circuit boards and reflow furnaces before using, because stress from circuit boards and temperature variations of reflow furnaces vary by customer's own conditions.

4 – 7. Attention Points in Soldering Operation

This product was developed as a surface mount LED especially suitable for reflow soldering. So reflow soldering is recommended. In case of implementing manual soldering, please take care of following points.

1SOLDER USED

Sn-Cu, Sn-Ag-Cu, Sn-Ag-Bi-Cu


2HAND SOLDERING CONDITION

LED products do not contain reinforcement material such as a glass fillers.

So thermal stress by soldering greatly influence its reliability.

Please keep following points for manual soldering.

	ITEM	RECOMMENDED CONDITION
a)	Heating method	Condition) Temp. of iron top less than 400°C within 3 sec. Heating on PCB pattern, not direct to the LED. (Fig-1)
b)		Please handle after the part temp. goes down to room temp.

4 – 8. Cleaning after Soldering

Please follow the conditions below if the cleaning is necessary after soldering.

Solvent	We recommend to use alcohols solvent such as, isopropyl alcohols
Temperature	Under 30°C within 3 minutes
Ultrasonic Cleaning	15W/Below 1 liter (capacity of tank)
Drying	Under 100℃ within 3 minutes

Notes

- 1) The information contained herein is subject to change without notice.
- Before you use our Products, please contact our sales representative and verify the latest specifications:
- 3) Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM
- 4) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
- 5) The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
- 6) The Products are intended for use in general electronic equipment (i.e. AV/OA devices, communication, consumer systems, gaming/entertainment sets) as well as the applications indicated in this document.
- 7) The Products specified in this document are not designed to be radiation tolerant.
- 8) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative : transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
- 9) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
- 10) ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
- 11) ROHM has used reasonable care to ensur the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 12) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 13) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 14) This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ROHM Semiconductor:

 SML-P12VTT86R
 SML-P12MTT86R
 SML-P12UTT86R
 SMLP13EC8TT86
 SMLP13BC8TT86
 SCMP13WBC8W1

 SML-P12DTT86R
 SML-P12WTT86R
 SML-P12Y3TT86R
 SML-P12Y2TT86R
 SML-P12Y2TT86R
 SML-P12W2TT86R

 SML-P13FTT86R
 SML-P12U2TT86R
 SML-P13PTT86R
 SML-P13PTT86R