Power Transistors

PNP Silicon DPAK For Surface Mount Applications

Designed for high-gain audio amplifier and power switching applications.

Features

- Low Collector-Emitter Saturation Voltage
- High Switching Speed
- Epoxy Meets UL 94 V-0 @ 0.125 in
- NJV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

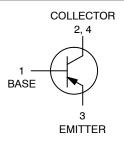
Rating	Symbol	Value	Unit
Collector-Base Voltage	V _{CB}	-50	Vdc
Collector-Emitter Voltage	V _{CEO}	-50	Vdc
Emitter-Base Voltage	V _{EB}	-5	Vdc
Collector Current – Continuous	I _C	-2	Adc
Collector Current - Peak	I _{CM}	-3	Adc
Base Current	Ι _Β	-0.4	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	15 0.1	W W/°C
Total Device Dissipation @ T _A = 25°C (Note 1) Derate above 25°C	P _D	1.68 0.011	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C
ESD - Human Body Model	HBM	3B	V
ESD – Machine Model	MM	С	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

 These ratings are applicable when surface mounted on the minimum pad sizes recommended.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance	1	10	°C/W
Junction-to-Case	$R_{\theta JC}$	10	
Junction-to-Ambient (Note 2)	$R_{\theta JA}$	89.3	


These ratings are applicable when surface mounted on the minimum pad sizes recommended.

ON Semiconductor®

http://onsemi.com

SILICON POWER TRANSISTORS 2 AMPERES 50 VOLTS 15 WATTS

DPAK CASE 369C STYLE 1

MARKING DIAGRAM

A = Assembly Location

Y = Year WW = Work Week G = Pb-Free Device

ORDERING INFORMATION

Device	Package	Shipping [†]
NJD1718T4G	DPAK (Pb-Free)	2500 / Tape & Reel
NJVNJD1718T4G	DPAK (Pb-Free)	2500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	1	<u> </u>		I .	l
Collector–Emitter Breakdown Voltage (Note 3) (I _C = -10 mAdc, I _B = 0)	BV _{CEO}	-50		-	Vdc
Collector Cutoff Current (V _{CB} = -50 Vdc, I _E = 0)	I _{CBO}	-		-100	nAdc
Emitter Cutoff Current (V _{BE} = -5 Vdc, I _C = 0)	I _{EBO}	-		-100	nAdc
ON CHARACTERISTICS	·				•
DC Current Gain (Note 3) (I _C = -0.5 A, V _{CE} = 2 V) (I _C = -1.5 Adc, V _{CE} = 2 Vdc)	h _{FE}	70 40		240 -	-
Collector–Emitter Saturation Voltage (Note 3) (I _C = -1 A, I _B = -0.05 A)	V _{CE(sat)}	-	-0.2	-0.5	Vdc
Base–Emitter Saturation Voltage (Note 3) (I _C = -1 A, I _B = -0.05 Adc)	V _{BE(sat)}	_	-	-1.2	Vdc
Base–Emitter On Voltage (Note 3) (I _C = -1 Adc, V _{CE} = -2 Vdc)	V _{BE(on)}	_	-	-1.2	Vdc
DYNAMIC CHARACTERISTICS	<u>.</u>				
Current-Gain - Bandwidth Product (Note 4) (I _C = -500 mAdc, V _{CE} = -2 Vdc, f _{test} = 10 MHz)	f _T	-	80	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 0.1 MHz)	C _{ob}	-	33	-	pF
Switching Timers	t _{ON}	-	55	-	ns
V _{CC} = -30 V, I _C = -1 A	t _{STG}	-	320	-	
	t _f	-	40	-	

^{3.} Pulse Test: Pulse Width = 300 μ s, Duty Cycle \approx 2%. 4. f_T = $|h_{fe}| \bullet f_{test}$.

TYPICAL CHARACTERISTICS

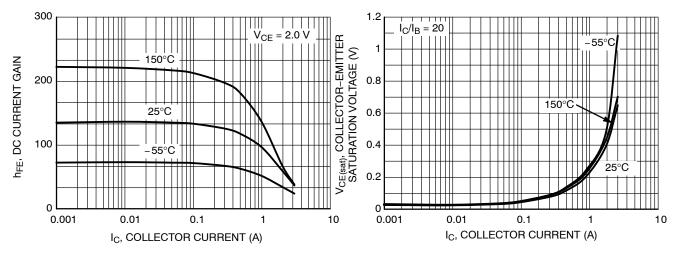


Figure 1. DC Current Gain

Figure 2. Collector-Emitter Saturation Voltage

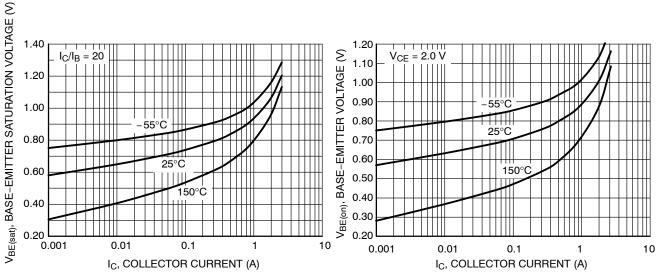


Figure 3. Base-Emitter Saturation Voltage

Figure 4. Base-Emitter Voltage

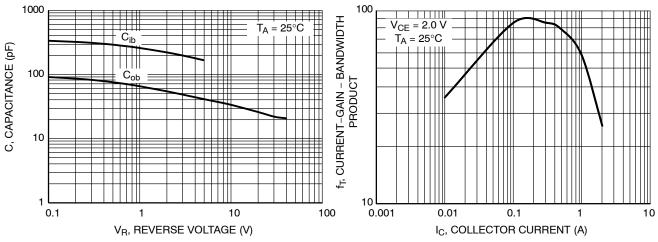


Figure 5. Capacitance

Figure 6. Current-Gain-Bandwidth Product

TYPICAL CHARACTERISTICS

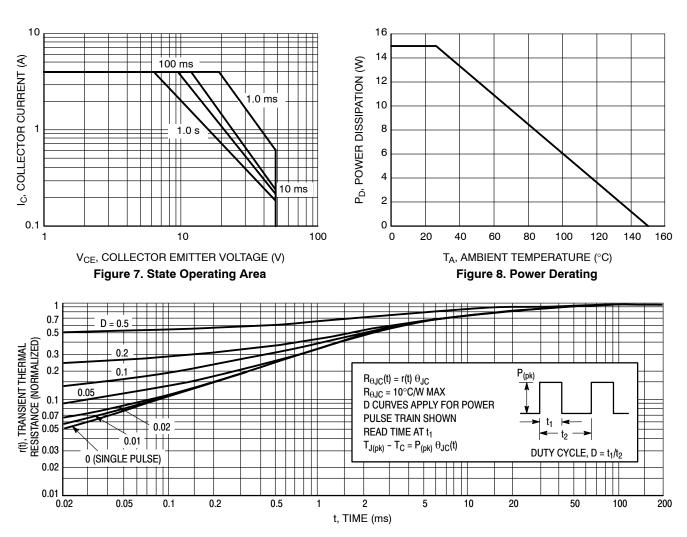


Figure 9. Thermal Response

DETAIL A ROTATED 90° CW

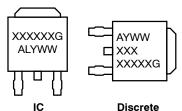
STYLE 2:

STYLE 1:

DPAK (SINGLE GAUGE) CASE 369C ISSUE F

DATE 21 JUL 2015

NOTES:


- IOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES. 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-

- MENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 5. DIMENSIONS D AND E ARE DETERMINED AT THE
- OUTERMOST EXTREMES OF THE PLASTIC BODY.

 6. DATUMS A AND B ARE DETERMINED AT DATUM
- 7. OPTIONAL MOLD FEATURE.

	INCHES		MILLIM	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.028	0.045	0.72	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
E	0.250	0.265	6.35	6.73	
е	0.090	BSC	2.29 BSC		
Н	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.114	REF	2.90	2.90 REF	
L2	0.020	BSC	0.51	BSC	
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Z	0.155		3.93		

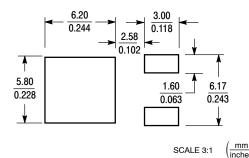
GENERIC MARKING DIAGRAM*

XXXXXX = Device Code

= Assembly Location Α

L = Wafer Lot Υ = Year

WW = Work Week G = Pb-Free Package


*This information is generic. Please refer to device data sheet for actual part marking.

SCALE 1:1 - h3 В L3 € DETAIL A NOTE 7 **BOTTOM VIEW** Ce SIDE VIEW | \oplus | 0.005 (0.13) lacktriangledown C **TOP VIEW** Z Ħ L2 GAUGE C SEATING **BOTTOM VIEW** Δ1 ALTERNATE CONSTRUCTIONS

PIN 1. BASE 2. COLLE 3. EMITTI 4. COLLE	ER 3. SC	RAIN DURCE	Pin 1. Anode 2. Cathc 3. Anode 4. Cathc	DDE	PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE	2.	GATE ANODE CATHODE ANODE
STYLE 6: PIN 1. MT1 2. MT2 3. GATE 4. MT2	STYLE 7: PIN 1. GATE 2. COLLECTO 3. EMITTER 4. COLLECTO	3. /		2. 3.	: ANODE CATHODE RESISTOR ADJUST CATHODE	2. 3.	0: CATHODE ANODE CATHODE ANODE

STYLE 3:

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1		

STYLE 5:

STYLE 4:

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative