STM32F103x8 STM32F103xB Medium-density performance line ARM-based 32-bit MCU with 64 or 128 KB Flash, USB, CAN, 7 timers, 2 ADCs, 9 communication interfaces # **Features** - Core: ARM 32-bit CortexTM-M3 CPU - 72 MHz maximum frequency, 1.25 DMIPS/MHz (Dhrystone 2.1) performance at 0 wait state memory access - Single-cycle multiplication and hardware division #### ■ Memories - 64 or 128 Kbytes of Flash memory - 20 Kbytes of SRAM - Clock, reset and supply management - 2.0 to 3.6 V application supply and I/Os - POR, PDR, and programmable voltage detector (PVD) - 4-to-16 MHz crystal oscillator - Internal 8 MHz factory-trimmed RC - Internal 40 kHz RC - PLL for CPU clock - 32 kHz oscillator for RTC with calibration #### ■ Low power - Sleep, Stop and Standby modes - V_{BAT} supply for RTC and backup registers - 2 x 12-bit, 1 µs A/D converters (up to 16 channels) - Conversion range: 0 to 3.6 V - Dual-sample and hold capability - Temperature sensor #### DMA - 7-channel DMA controller - Peripherals supported: timers, ADC, SPIs, I²Cs and USARTs - Up to 80 fast I/O ports - 26/37/51/80 I/Os, all mappable on 16 external interrupt vectors and almost all 5 V-tolerant - Debug mode - Serial wire debug (SWD) & JTAG interfaces #### 7 timers - Three 16-bit timers, each with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input - 16-bit, motor control PWM timer with deadtime generation and emergency stop - 2 watchdog timers (Independent and Window) - SysTick timer: a 24-bit downcounter - Up to 9 communication interfaces - Up to 2 x I²C interfaces (SMBus/PMBus) - Up to 3 USARTs (ISO 7816 interface, LIN, IrDA capability, modem control) - Up to 2 SPIs (18 Mbit/s) - CAN interface (2.0B Active) - USB 2.0 full-speed interface - CRC calculation unit, 96-bit unique ID - Packages are ECOPACK[®] Table 1. Device summary | Reference | Part number | |-------------|--| | STM32F103x8 | STM32F103C8, STM32F103R8
STM32F103V8, STM32F103T8 | | STM32F103xB | STM32F103RB STM32F103VB,
STM32F103CB | April 2009 Doc ID 13587 Rev 10 1/91 # **Contents** | 1 | Intro | duction | | 9 | |---|-------|----------|---|------| | 2 | Desc | cription | | 9 | | | 2.1 | Device | overview | . 10 | | | 2.2 | Full co | mpatibility throughout the family | . 11 | | | 2.3 | Overvie | ew | . 12 | | | | 2.3.1 | ARM® CortexTM-M3 core with embedded Flash and SRAM | 12 | | | | 2.3.2 | Embedded Flash memory | 12 | | | | 2.3.3 | CRC (cyclic redundancy check) calculation unit | 12 | | | | 2.3.4 | Embedded SRAM | | | | | 2.3.5 | Nested vectored interrupt controller (NVIC) | 12 | | | | 2.3.6 | External interrupt/event controller (EXTI) | 13 | | | | 2.3.7 | Clocks and startup | 13 | | | | 2.3.8 | Boot modes | 13 | | | | 2.3.9 | Power supply schemes | 13 | | | | 2.3.10 | Power supply supervisor | 13 | | | | 2.3.11 | Voltage regulator | 14 | | | | 2.3.12 | Low-power modes | 14 | | | | 2.3.13 | DMA | 15 | | | | 2.3.14 | RTC (real-time clock) and backup registers | 15 | | | | 2.3.15 | Timers and watchdogs | 15 | | | | 2.3.16 | I ² C bus | 17 | | | | 2.3.17 | Universal synchronous/asynchronous receiver transmitter (USART) | 17 | | | | 2.3.18 | Serial peripheral interface (SPI) | 17 | | | | 2.3.19 | Controller area network (CAN) | 17 | | | | 2.3.20 | Universal serial bus (USB) | 17 | | | | 2.3.21 | GPIOs (general-purpose inputs/outputs) | 18 | | | | 2.3.22 | ADC (analog-to-digital converter) | 18 | | | | 2.3.23 | Temperature sensor | 18 | | | | 2.3.24 | Serial wire JTAG debug port (SWJ-DP) | 18 | | 3 | Pino | uts and | pin description | . 21 | | 4 | Mem | nory ma | oping | . 31 | | 5 | Electr | ical cha | aracteristics | . 32 | |------------|--------|----------|--|------| | | 5.1 | Parame | ter conditions | . 32 | | | | 5.1.1 | Minimum and maximum values | . 32 | | | | 5.1.2 | Typical values | . 32 | | | | 5.1.3 | Typical curves | 32 | | | | 5.1.4 | Loading capacitor | . 32 | | | | 5.1.5 | Pin input voltage | . 32 | | | | 5.1.6 | Power supply scheme | 33 | | | | 5.1.7 | Current consumption measurement | 34 | | | 5.2 | Absolute | e maximum ratings | . 34 | | | 5.3 | Operatir | ng conditions | . 35 | | | | 5.3.1 | General operating conditions | 35 | | | | 5.3.2 | Operating conditions at power-up / power-down | . 36 | | | | 5.3.3 | Embedded reset and power control block characteristics | | | | | 5.3.4 | Embedded reference voltage | . 38 | | | | 5.3.5 | Supply current characteristics | 38 | | | | 5.3.6 | External clock source characteristics | . 47 | | | | 5.3.7 | Internal clock source characteristics | . 50 | | | | 5.3.8 | PLL characteristics | 52 | | | | 5.3.9 | Memory characteristics | 52 | | | | 5.3.10 | EMC characteristics | . 53 | | | | 5.3.11 | Absolute maximum ratings (electrical sensitivity) | . 55 | | | | 5.3.12 | I/O port characteristics | . 56 | | | | 5.3.13 | NRST pin characteristics | . 59 | | | | 5.3.14 | TIM timer characteristics | . 60 | | | | 5.3.15 | Communications interfaces | 61 | | | | 5.3.16 | CAN (controller area network) interface | . 66 | | | | 5.3.17 | 12-bit ADC characteristics | . 67 | | | | 5.3.18 | Temperature sensor characteristics | . 71 | | 6 | Packa | ige chai | acteristics | . 72 | | | 6.1 | Package | e mechanical data | . 72 | | | 6.2 | Therma | characteristics | . 81 | | | | 6.2.1 | Reference document | 81 | | | | 6.2.2 | Selecting the product temperature range | | | 7 | Order | ing info | rmation scheme | . 84 | | 577 | | | Doc ID 13587 Rev 10 | 3/91 | | ^- | | nts | |-------------|-----|-----| | L. O | nte | nts | 8 Revision history 85 # List of tables | Table 1. | Device summary | . 1 | |-----------|---|-----| | Table 2. | STM32F103xx medium-density device features and peripheral counts | | | Table 3. | STM32F103xx family | | | Table 4. | Timer feature comparison | | | Table 5. | Medium-density STM32F103xx pin definitions | | | Table 6. | Voltage characteristics | | | Table 7. | Current characteristics | | | Table 8. | Thermal characteristics | | | Table 9. | General operating conditions | | | Table 10. | Operating conditions at power-up / power-down | | | Table 11. | Embedded reset and power control block characteristics | | | Table 12. | Embedded internal reference voltage | | | Table 12. | Maximum current consumption in Run mode, code with data processing | 50 | | Table 15. | running from Flash | 39 | | Table 14. | Maximum current consumption in Run mode, code with data processing | 00 | | 145.5 | running from RAM | 39 | | Table 15. | Maximum current consumption in Sleep mode, code running from Flash or RAM | | | Table 16. | Typical and maximum current consumptions in Stop and Standby modes | | | Table 17. | Typical current consumption in Run mode, code with data processing | | | | running from Flash | 44 | | Table 18. | Typical current consumption in Sleep mode, code running from Flash or | | | | RAM | | | Table 19. | Peripheral current consumption | | | Table 20. | High-speed external user clock characteristics | | | Table 21. | Low-speed external user clock characteristics | | | Table 22. | HSE 4-16 MHz oscillator characteristics | | | Table 23. | LSE oscillator characteristics (f _{LSE} = 32.768 kHz) | | | Table 24. | HSI oscillator characteristics | | | Table 25. | LSI oscillator characteristics | | | Table 26. | Low-power mode wakeup timings | | | Table 27. | PLL characteristics | | | Table 28. | Flash memory characteristics | | | Table 29. | Flash memory endurance and data retention | 53 | | Table 30. | EMS characteristics | 54 | | Table 31. | EMI characteristics | 54 | | Table 32. | ESD absolute maximum ratings | 55 | | Table 33. | Electrical sensitivities | | | Table 34. | I/O static characteristics | | | Table 35. | Output voltage characteristics | 57 | | Table 36. | I/O AC characteristics | 58 | | Table 37. | NRST pin characteristics | 59 | | Table 38. | TIMx characteristics | | | Table 39. | I ² C characteristics | 61 | | Table 40. | SCL frequency (f _{PCLK1} = 36 MHz.,V _{DD} = 3.3 V) | | | Table 41. | SPI characteristics | | | Table 42. | USB startup time | 65 | | Table 43. | USB DC electrical characteristics | 66 | | Table 44. | USB: Full-speed electrical characteristics | 66 | # STM32F103x8, STM32F103xB # List of tables | Table 45. | ADC characteristics | . 67 | |-----------|--|------| | Table 46. | R_{AIN} max for $f_{ADC} = 14$ MHz | . 68 | | Table 47. | ADC accuracy - limited test conditions | | | Table 48. | ADC accuracy | . 69 | | Table 49. | TS characteristics | . 71 | | Table 50. | VFQFPN36 6 x 6 mm, 0.5 mm pitch, package mechanical data | . 73 | | Table 51. | LFBGA100 - low profile fine pitch ball grid array package mechanical data | . 74 | | Table 52. | LQPF100, 100-pin low-profile quad flat package mechanical data | . 76 | | Table 53. | LQFP64, 64-pin low-profile quad flat package mechanical data | . 77 | | Table 54. | TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package mechanical data | . 78 | | Table 55. | LQFP48, 48-pin low-profile quad flat package mechanical data | . 80 | | Table 56. | Package thermal characteristics | . 81 | | Table 57 | Ordering information scheme | 84 | # **List of figures** | Figure 1. | STM32F103xx performance line block diagram | 19 | |------------|---|----| | Figure 2. | Clock tree | | | Figure 3. | STM32F103xx performance line LFBGA100 ballout | 21 | | Figure 4. | STM32F103xx performance line LQFP100 pinout | 22 | | Figure 5. | STM32F103xx performance line LQFP64 pinout | | | Figure 6. | STM32F103xx performance line TFBGA64 ballout | | |
Figure 7. | STM32F103xx performance line LQFP48 pinout | | | Figure 8. | STM32F103xx Performance Line VFQFPN36 pinout | | | Figure 9. | Memory map | | | Figure 10. | Pin loading conditions | | | Figure 11. | Pin input voltage | | | Figure 12. | Power supply scheme | | | Figure 13. | Current consumption measurement scheme | | | Figure 14. | Typical current consumption in Run mode versus frequency (at 3.6 V) - | 04 | | rigule 14. | code with data processing running from RAM, peripherals enabled | 40 | | Figure 15. | Typical current consumption in Run mode versus frequency (at 3.6 V) - | 40 | | rigule 15. | code with data processing running from RAM, peripherals disabled | 40 | | Eiguro 16 | | 40 | | Figure 16. | Typical current consumption in Stop mode with regulator in Run mode versus | 40 | | Ciaura 17 | temperature at V _{DD} = 3.3 V and 3.6 V | 42 | | Figure 17. | Typical current consumption in Stop mode with regulator in Low-power mode versus | 40 | | Fig 10 | temperature at V _{DD} = 3.3 V and 3.6 V | 43 | | Figure 18. | Typical current consumption in Standby mode versus temperature at | 40 | | E: 40 | V _{DD} = 3.3 V and 3.6 V | | | Figure 19. | High-speed external clock source AC timing diagram | | | Figure 20. | Low-speed external clock source AC timing diagram | | | Figure 21. | Typical application with an 8 MHz crystal | | | Figure 22. | Typical application with a 32.768 kHz crystal | | | Figure 23. | I/O AC characteristics definition | | | Figure 24. | Recommended NRST pin protection | | | Figure 25. | I ² C bus AC waveforms and measurement circuit | | | Figure 26. | SPI timing diagram - slave mode and CPHA = 0 | | | Figure 27. | SPI timing diagram - slave mode and CPHA = 1 ⁽¹⁾ | 64 | | Figure 28. | SPI timing diagram - master mode ⁽¹⁾ | | | Figure 29. | USB timings: definition of data signal rise and fall time | | | Figure 30. | ADC accuracy characteristics | | | Figure 31. | Typical connection diagram using the ADC | | | Figure 32. | Power supply and reference decoupling (V _{REF+} not connected to V _{DDA}) | | | Figure 33. | Power supply and reference decoupling (V _{REF+} connected to V _{DDA}) | 71 | | Figure 34. | Power supply and reference decoupling (V _{REF+} connected to V _{DDA}) VFQFPN36 6 x 6 mm, 0.5 mm pitch, package outline (1) · · · · · · · · · · · · · · · · · · · | /3 | | Figure 35. | Recommended footprint (dimensions in mm) ⁽¹⁾⁽²⁾⁽³⁾ ··································· | /3 | | Figure 36. | LFBGA100 - low profile fine pitch ball grid array package outline | 74 | | Figure 37. | Recommended PCB design rules (0.80/0.75 mm pitch BGA) | 75 | | Figure 38. | LQFP100, 100-pin low-profile quad flat package outline | 76 | | Figure 39. | Recommended footprint ⁽¹⁾ | 76 | | Figure 40. | LQFP64, 64-pin low-profile quad flat package outline | 77 | | Figure 41. | Recommended footprint ⁽¹⁾ | 77 | | Figure 42. | TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package outline | 78 | | Figure 43. | Recommended PCB design rules for pads (0.5 mm pitch BGA) | | | List | of | fiq | ures | |------|----|-----|------| |------|----|-----|------| # STM32F103x8, STM32F103xB | Figure 44. | LQFP48, 48-pin low-profile quad flat package outline | 80 | |------------|--|----| | Figure 45. | Recommended footprint ⁽¹⁾ | 80 | | Figure 46. | LQFP100 P _D max vs. T _A | 83 | 577 # 1 Introduction This datasheet provides the ordering information and mechanical device characteristics of the STM32F103x8 and STM32F103xB medium-density performance line microcontrollers. For more details on the whole STMicroelectronics STM32F103xx family, please refer to Section 2.2: Full compatibility throughout the family. The medium-density STM32F103xx datasheet should be read in conjunction with the low-, medium- and high-density STM32F10xxx reference manual. The reference and Flash programming manuals are both available from the STMicroelectronics website www.st.com. For information on the Cortex[™]-M3 core please refer to the Cortex[™]-M3 Technical Reference Manual, available from the www.arm.com website at the following address: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/. # 2 Description The STM32F103x8 and STM32F103xB performance line family incorporates the high-performance ARM Cortex[™]-M3 32-bit RISC core operating at a 72 MHz frequency, high-speed embedded memories (Flash memory up to 128 Kbytes and SRAM up to 20 Kbytes), and an extensive range of enhanced I/Os and peripherals connected to two APB buses. All devices offer two 12-bit ADCs, three general purpose 16-bit timers plus one PWM timer, as well as standard and advanced communication interfaces: up to two I²Cs and SPIs, three USARTs, an USB and a CAN. The STM32F103xx medium-density performance line family operates from a 2.0 to 3.6 V power supply. It is available in both the –40 to +85 °C temperature range and the –40 to +105 °C extended temperature range. A comprehensive set of power-saving mode allows the design of low-power applications. The STM32F103xx medium-density performance line family includes devices in six different package types: from 36 pins to 100 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family. These features make the STM32F103xx medium-density performance line microcontroller family suitable for a wide range of applications: - Motor drive and application control - Medical and handheld equipment - PC peripherals gaming and GPS platforms - Industrial applications: PLC, inverters, printers, and scanners - Alarm systems, Video intercom, and HVAC Figure 1 shows the general block diagram of the device family. # 2.1 Device overview Table 2. STM32F103xx medium-density device features and peripheral counts | Peripheral | | STM32F103Tx | STM32 | STM32F103Cx | | STM32F103Rx | | STM32F103Vx | | |---------------|--------------------|--|-------------|-------------|--------------------|-------------|-------------|----------------|--| | Flash | ı - Kbytes | 64 | 64 | 128 | 64 | 128 | 64 | 128 | | | SRAI | M - Kbytes | 20 | 20 | 20 | 2 | 0 | 2 | 0 | | | Timers | General-purpose | 3 | 3 | 3 | 3 | 3 | (| 3 | | | Ē | Advanced-control | 1 | - | l | - | 1 | - | 1 | | | _ | SPI | 1 | 2 | 2 | 2 | 2 | 2 | 2 | | | atio | I ² C | 1 | 2 | 2 | 2 | 2 | 2 | 2 | | | Communication | USART | 2 | 3 | 3 | 3 | | 3 | | | | omn | USB | 1 | 1 | 1 | 1 | | 1 | | | | 0 | CAN | 1 | 1 | 1 | 1 | | 1 | | | | GPIOs | | 26 | 37 | | 51 | | 8 | 0 | | | 12-bi | t synchronized ADC | 2 | 2 | | 2 | | 2 | | | | Numl | per of channels | 10 channels | 10 channels | | 16 channels | | 16 channels | | | | CPU | frequency | 72 MHz | | | | | | | | | Opera | ating voltage | 2.0 to 3.6 V | | | | | | | | | Opera | ating temperatures | Ambient temperatures: -40 to +85 °C /-40 to +105 °C (see <i>Table 9</i>) Junction temperature: -40 to + 125 °C (see <i>Table 9</i>) | | | | | ole 9) | | | | Packages | | VFQFPN36 | LQF | P48 | LQFP64,
TFBGA64 | | | P100,
iA100 | | # 2.2 Full compatibility throughout the family The STM32F103xx is a complete family whose members are fully pin-to-pin, software and feature compatible. In the reference manual, the STM32F103x4 and STM32F103x6 are identified as low-density devices, the STM32F103x8 and STM32F103xB are referred to as medium-density devices, and the STM32F103xC, STM32F103xD and STM32F103xE are referred to as high-density devices. Low- and high-density devices are an extension of the STM32F103x8/B devices, they are specified in the STM32F103x4/6 and STM32F103xC/D/E datasheets, respectively. Low-density devices feature lower Flash memory and RAM capacities, less timers and peripherals. High-density devices have higher Flash memory and RAM capacities, and additional peripherals like SDIO, FSMC, I²S and DAC, while remaining fully compatible with the other members of the STM32F103xx family. The STM32F103x4, STM32F103x6, STM32F103xC, STM32F103xD and STM32F103xE are a drop-in replacement for STM32F103x8/B medium-density devices, allowing the user to try different memory densities and providing a greater degree of freedom during the development cycle. Moreover, the STM32F103xx performance line family is fully compatible with all existing STM32F101xx access line and STM32F102xx USB access line devices. | Table 3. | STM32F103xx | family | |----------|-------------|--------| |----------|-------------|--------| | | Low-density devices | | Medium-density devices | | High-density devices | | | | |--------|--|-----------|---|-----------|--|-----------|-----------------|--| | Pinout | 16 KB 32 KB
Flash Flash ⁽¹⁾ | | 64 KB 128 KB
Flash Flash | | | | 512 KB
Flash | | | | 6 KB RAM | 10 KB RAM | 20 KB RAM | 20 KB RAM | 48 KB RAM | 64 KB RAM | 64 KB RAM | | | 144 | | | | | 5 × USARTs | | | | | 100 | | | 3×16 -bit timers
$2 \times SPIs$, $2 \times I^2Cs$, USB,
CAN, $1 \times PWM$ timer | | 4×16 -bit timers, $2 \times$ basic timers
$3 \times$ SPIs, $2 \times I^2$ Ss, $2 \times I2$ Cs
USB, CAN, $2 \times$ PWM timers
$3 \times$ ADCs, $1 \times$ DAC, $1 \times$ SDIO
FSMC (100 and 144 pins) | | | | | 64 | 2 × USARTs
2 × 16-bit timers
1 × SPI, 1 × I ² C, USB,
CAN, 1 × PWM timer
2 × ADCs | | | | | | | | | 48 | | | 2 × ADC | | | | | | | 36 | | | | | | | | | For orderable part
numbers that do not show the A internal code after the temperature range code (6 or 7), the reference datasheet for electrical characteristics is that of the STM32F103x8/B medium-density devices. # 2.3 Overview # 2.3.1 ARM® CortexTM-M3 core with embedded Flash and SRAM The ARM CortexTM-M3 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts. The ARM Cortex[™]-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. The STM32F103xx performance line family having an embedded ARM core, is therefore compatible with all ARM tools and software. Figure 1 shows the general block diagram of the device family. # 2.3.2 Embedded Flash memory 64 or 128 Kbytes of embedded Flash is available for storing programs and data. # 2.3.3 CRC (cyclic redundancy check) calculation unit The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location. #### 2.3.4 Embedded SRAM Twenty Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states. ### 2.3.5 Nested vectored interrupt controller (NVIC) The STM32F103xx performance line embeds a nested vectored interrupt controller able to handle up to 43 maskable interrupt channels (not including the 16 interrupt lines of Cortex™-M3) and 16 priority levels. - Closely coupled NVIC gives low-latency interrupt processing - Interrupt entry vector table address passed directly to the core - Closely coupled NVIC core interface - Allows early processing of interrupts - Processing of late arriving higher priority interrupts - Support for tail-chaining - Processor state automatically saved - Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimal interrupt latency. # 2.3.6 External interrupt/event controller (EXTI) The external interrupt/event controller consists of 19 edge detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 80 GPIOs can be connected to the 16 external interrupt lines. # 2.3.7 Clocks and startup System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator). Several prescalers allow the configuration of the AHB frequency, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and the high-speed APB domains is 72 MHz. The maximum allowed frequency of the low-speed APB domain is 36 MHz. See *Figure 2* for details on the clock tree. #### 2.3.8 Boot modes At startup, boot pins are used to select one of three boot options: - Boot from User Flash - Boot from System Memory - Boot from embedded SRAM The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART1. For further details please refer to AN2606. # 2.3.9 Power supply schemes - $V_{DD} = 2.0$ to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins. - V_{SSA}, V_{DDA} = 2.0 to 3.6 V: external analog power supplies for ADC, reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 2.4 V when the ADC is used). V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively. - V_{BAT} = 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present. For more details on how to connect power pins, refer to Figure 12: Power supply scheme. ### 2.3.10 Power supply supervisor The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$, without the need for an external reset circuit. The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. Refer to Table 11: Embedded reset and power control block characteristics for the values of $V_{POB/PDB}$ and V_{PVD} . # 2.3.11 Voltage regulator The regulator has three operation modes: main (MR), low power (LPR) and power down. - MR is used in the nominal regulation mode (Run) - LPR is used in the Stop mode - Power down is used in Standby mode: the regulator output is in high impedance: the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost) This regulator is always enabled after reset. It is disabled in Standby mode, providing high impedance output. # 2.3.12 Low-power modes The STM32F103xx performance line supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: #### Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. #### Stop mode The Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode. The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm or the USB wakeup. #### Standby mode The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry. The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs. Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode. #### 2.3.13 DMA The flexible 7-channel general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management avoiding the generation of interrupts when the controller reaches the end of the buffer. Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent. The DMA can be used with the main peripherals: SPI, I²C, USART, general-purpose and advanced-control timers TIMx and ADC. # 2.3.14 RTC (real-time clock) and backup registers The RTC and the backup registers are supplied through a switch that takes power either on V_{DD} supply when present or through the V_{BAT} pin. The backup registers are ten 16-bit registers used to store 20 bytes of user application data when V_{DD} power is not present. The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-power RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural crystal deviation. The RTC features a 32-bit programmable counter for long-term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz. # 2.3.15 Timers and watchdogs The medium-density STM32F103xx performance line devices include an advanced-control timer, three general-purpose timers, two watchdog timers and a SysTick timer. *Table 4* compares the features of the advanced-control and general-purpose timers. Table 4. Timer feature comparison | Timer | Counter resolution | Counter
type | Prescaler factor | DMA request
generation | Capture/compare channels | Complementary outputs | |------------------------|--------------------|-------------------------|---------------------------------------|------------------------|--------------------------|-----------------------| | TIM1 | 16-bit | Up,
down,
up/down | Any integer
between 1
and 65536 | Yes | 4 | Yes | | TIM2,
TIM3,
TIM4 | 16-bit | Up,
down,
up/down | Any integer
between 1
and 65536 | Yes | 4 | No | ### Advanced-control timer (TIM1) The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable inserted dead-times. It can also be seen as a complete general-purpose timer. The 4 independent channels can be used for - Input capture - Output compare - PWM generation (edge- or center-aligned modes) - One-pulse mode output If configured as a general-purpose 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%). In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switch driven by these outputs. Many features are shared with those of the general-purpose TIM timers which have the same architecture. The advanced-control timer can therefore work together with the TIM timers via the Timer Link feature for synchronization or event chaining. # General-purpose timers (TIMx) There are up to three synchronizable general-purpose timers embedded in the STM32F103xx performance line devices. These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages. The general-purpose timers can work together with the advanced-control timer via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. They all have independent DMA request generation. These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors. #### Independent watchdog The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently of the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. The counter can be frozen in debug mode. ### Window watchdog The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. # SysTick timer This timer is dedicated for OS, but could also be used as a standard downcounter. It features: - A 24-bit downcounter - Autoreload capability - Maskable system interrupt generation when the counter reaches 0 - Programmable clock source #### 2.3.16 I2C bus Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard and fast modes. They support dual slave addressing (7-bit only) and both 7/10-bit addressing in master mode. A hardware CRC generation/verification is embedded. They can be served by DMA and they support SM Bus 2.0/PM Bus. # 2.3.17 Universal synchronous/asynchronous receiver transmitter (USART) One of the USART interfaces is able to communicate at speeds of up to 4.5 Mbit/s. The other available interfaces communicate at up to 2.25 Mbit/s. They provide hardware management of the CTS and RTS signals, IrDA SIR ENDEC support, are ISO 7816 compliant and have LIN Master/Slave capability. All USART interfaces can be served by the DMA controller. # 2.3.18 Serial peripheral interface (SPI) Up to two SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. Both SPIs can be served by the DMA controller. # 2.3.19 Controller area network (CAN) The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks. ### 2.3.20 Universal serial bus (USB) The STM32F103xx performance line embeds a USB device peripheral compatible with the USB full-speed 12 Mbs. The USB interface implements a full-speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator). # 2.3.21 GPIOs (general-purpose inputs/outputs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable except for analog inputs. The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers. I/Os on APB2 with up to 18 MHz toggling speed # 2.3.22 ADC (analog-to-digital converter) Two 12-bit analog-to-digital converters are embedded into STM32F103xx performance line devices and each ADC shares up to 16 external channels, performing conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs. Additional logic functions embedded in the ADC interface allow: - Simultaneous sample and hold - Interleaved sample and hold - Single shunt The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. The events generated by the general-purpose timers (TIMx) and the advanced-control timer (TIM1) can be internally connected to the ADC start trigger, injection trigger, and DMA trigger respectively, to allow the application to synchronize A/D conversion and timers. # 2.3.23 Temperature sensor The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 2 V < V_{DDA} < 3.6 V. The temperature sensor is internally connected to the ADC12_IN16 input channel which is used to convert the sensor output voltage into a digital value. # 2.3.24 Serial wire JTAG debug port (SWJ-DP) The ARM SWJ-DP Interface is embedded. and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP. Figure 1. STM32F103xx performance line block diagram - 1. $T_A = -40$ °C to +105 °C (junction temperature up to 125 °C). - 2. AF = alternate function on I/O port pin. Figure 2. Clock tree - 1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is 64 MHz - For the USB function to be available, both HSE and PLL must be enabled, with the CPU running at either 48 MHz or 72 MHz. - 3. To have an ADC conversion time of 1 μ s, APB2 must be at 14 MHz, 28 MHz or 56 MHz. # 3 Pinouts and pin description Figure 3. STM32F103xx performance line LFBGA100 ballout Figure 4. STM32F103xx performance line LQFP100 pinout 577 Figure 5. STM32F103xx performance line LQFP64 pinout 1 2 3 4 5 6 7 8 PC14-PC13-(PA15) (PA14) OSC32_INTAMPER RTC PB9 Α PB4 PB3 (PA13) PC15-BOOTO В PB8 PD2 PC11 PC10 PA12 OSC32_OUT PB7 PB5 PC12 С V_{SS_4} (PA10) PA9 PA11 PC9 (V_{SS_1}, D OSC_OUT 'V_{DD_4}' PB6 'V_{SS_3} V_{SS_2} PA8 PC8 Ε (NRST) PC1 PC0 'V_{DD_1},' PC7 'VDD_3' ',V_{DD_2}' (PC2 \ 'VSSA' PA2 PA5 ; (PB0) / PC6 } (PB15); PB14; F PA6 G PB1 PB2 PB10 (PB13 PAO-WKŲP PA3 PB12 PB11 Н V_{DDA} PA7 PC5 AI15494 Figure 6. STM32F103xx performance line TFBGA64 ballout VDD_3 VSS_3 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PA15 ′36 🗖 VDD_2 VBAT 🗆 35 VSS_2 PC13-TAMPER-RTC 2 34 PA13 PC14-OSC32_IN 🖂 33 PA12 PC15-OSC32_OUT d 32 PA11 PD0-OSC_IN 🗖 5 31 PA10 PD1-OSC_OUT d6 LQFP48 NRST [7 VSSA [8 VDDA [9 PA0-WKUP [10] 30 PA9 29 PA8 28 PB15 27 PB14 26 PB13 25 PB12 PA1 🗖 11 PA2 12 PA3 C PA4 C PA5 C PA6 C PA7 C PB1 PB1 PB2 PB10 PB10 PB11 VSS_1 VSS_1 VSS_1 VSS_1 VSS_1 VSS_1 PD1 PB11 VSS_1 ai14393b Figure 7. STM32F103xx performance line LQFP48 pinout Table 5. Medium-density STM32F103xx pin definitions | Iabi | | Pin | | | | Y STM32F103XX P | | (2) | | Alternate fo | unctions | |----------|--------|-------------------|--------|---------|----------|------------------------------------|---------------------|----------------------------|--|---|----------| | LFBGA100 | LQFP48 | TFBGA64 | LQFP64 | LQFP100 | VFQFPN36 | Pin name | Type ⁽¹⁾ | I / O Level ⁽²⁾ | Main
function ⁽³⁾
(after reset) | Default | Remap | | А3 | - | | - | 1 | - | PE2 | I/O | FT | PE2 | TRACECK | | | ВЗ | - | | - | 2 | - | PE3 | I/O | FT | PE3 | TRACED0 | | | СЗ | - | | - | 3 | - | PE4 | I/O | FT | PE4 | TRACED1 | | | D3 | - | | - | 4 | - | PE5 |
I/O | FT | PE5 | TRACED2 | | | E3 | - | | - | 5 | - | PE6 | I/O | FT | PE6 | TRACED3 | | | B2 | 1 | B2 | 1 | 6 | - | V _{BAT} | S | | V_{BAT} | | | | A2 | 2 | A2 | 2 | 7 | - | PC13-TAMPER-
RTC ⁽⁴⁾ | I/O | | PC13 ⁽⁵⁾ | TAMPER-RTC | | | A1 | 3 | A1 | 3 | 8 | - | PC14-OSC32_IN ⁽⁴⁾ | I/O | | PC14 ⁽⁵⁾ | OSC32_IN | | | В1 | 4 | B1 | 4 | 9 | - | PC15-
OSC32_OUT ⁽⁴⁾ | I/O | | PC15 ⁽⁵⁾ | OSC32_OUT | | | C2 | - | - | - | 10 | - | V _{SS_5} | S | | V _{SS_5} | | | | D2 | - | - | - | 11 | - | V_{DD_5} | S | | V_{DD_5} | | | | C1 | 5 | C1 | 5 | 12 | 2 | OSC_IN | I | | OSC_IN | | | | D1 | 6 | D1 | 6 | 13 | 3 | OSC_OUT | 0 | | OSC_OUT | | | | E1 | 7 | E1 | 7 | 14 | 4 | NRST | I/O | | NRST | | | | F1 | - | E3 | 8 | 15 | - | PC0 | I/O | | PC0 | ADC12_IN10 | | | F2 | - | E2 | 9 | 16 | - | PC1 | I/O | | PC1 | ADC12_IN11 | | | E2 | - | F2 | 10 | 17 | - | PC2 | I/O | | PC2 | ADC12_IN12 | | | F3 | - | _(6) | 11 | 18 | - | PC3 | I/O | | PC3 | ADC12_IN13 | | | G1 | 8 | F1 | 12 | 19 | 5 | V _{SSA} | S | | V_{SSA} | | | | H1 | - | - | ı | 20 | - | V _{REF-} | S | | V_{REF} | | | | J1 | - | G1 ⁽⁶⁾ | ı | 21 | - | V_{REF+} | S | | V_{REF+} | | | | K1 | 9 | H1 | 13 | 22 | 6 | V_{DDA} | S | | V_{DDA} | | | | G2 | 10 | G2 | 14 | 23 | 7 | PA0-WKUP | I/O | | PA0 | WKUP/
USART2_CTS ⁽⁷⁾ /
ADC12_INO/
TIM2_CH1_ETR ⁽⁷⁾ | | | H2 | 11 | H2 | 15 | 24 | 8 | PA1 | I/O | | PA1 | USART2_RTS ⁽⁷⁾ /
ADC12_IN1/
TIM2_CH2 ⁽⁷⁾ | | | J2 | 12 | F3 | 16 | 25 | 9 | PA2 | I/O | | PA2 | USART2_TX ⁽⁷⁾ /
ADC12_IN2/
TIM2_CH3 ⁽⁷⁾ | | Table 5. Medium-density STM32F103xx pin definitions (continued) | | | Pin | ıs | | | · | | (2) | • | Alternate for | unctions | |----------|--------|---------|--------|---------|----------|-------------------|---------------------|----------------------------|--|--|-----------| | LFBGA100 | LQFP48 | TFBGA64 | LQFP64 | LQFP100 | VFQFPN36 | Pin name | Type ⁽¹⁾ | I / O Level ⁽²⁾ | Main
function ⁽³⁾
(after reset) | Default | Remap | | K2 | 13 | G3 | 17 | 26 | 10 | PA3 | I/O | | PA3 | USART2_RX ⁽⁷⁾ /
ADC12_IN3/
TIM2_CH4 ⁽⁷⁾ | | | E4 | - | C2 | 18 | 27 | - | V _{SS_4} | S | | V _{SS_4} | | | | F4 | ı | D2 | 19 | 28 | - | V_{DD_4} | S | | V_{DD_4} | | | | G3 | 14 | НЗ | 20 | 29 | 11 | PA4 | I/O | | PA4 | SPI1_NSS ⁽⁷⁾ /
USART2_CK ⁽⁷⁾ /
ADC12_IN4 | | | НЗ | 15 | F4 | 21 | 30 | 12 | PA5 | I/O | | PA5 | SPI1_SCK ⁽⁷⁾ /
ADC12_IN5 | | | J3 | 16 | G4 | 22 | 31 | 13 | PA6 | I/O | | PA6 | SPI1_MISO ⁽⁷⁾ /
ADC12_IN6/
TIM3_CH1 ⁽⁷⁾ | TIM1_BKIN | | КЗ | 17 | H4 | 23 | 32 | 14 | PA7 | I/O | | PA7 | SPI1_MOSI ⁽⁷⁾ /
ADC12_IN7/
TIM3_CH2 ⁽⁷⁾ | TIM1_CH1N | | G4 | - | H5 | 24 | 33 | | PC4 | I/O | | PC4 | ADC12_IN14 | | | H4 | - | H6 | 25 | 34 | | PC5 | I/O | | PC5 | ADC12_IN15 | | | J4 | 18 | F5 | 26 | 35 | 15 | PB0 | I/O | | PB0 | ADC12_IN8/
TIM3_CH3 ⁽⁷⁾ | TIM1_CH2N | | K4 | 19 | G5 | 27 | 36 | 16 | PB1 | I/O | | PB1 | ADC12_IN9/
TIM3_CH4 ⁽⁷⁾ | TIM1_CH3N | | G5 | 20 | G6 | 28 | 37 | 17 | PB2 | I/O | FT | PB2/BOOT1 | | | | H5 | 1 | 1 | 1 | 38 | - | PE7 | I/O | FT | PE7 | | TIM1_ETR | | J5 | - | - | - | 39 | - | PE8 | I/O | FT | PE8 | | TIM1_CH1N | | K5 | - | - | - | 40 | - | PE9 | I/O | FT | PE9 | | TIM1_CH1 | | G6 | - | - | - | 41 | - | PE10 | I/O | FT | PE10 | | TIM1_CH2N | | H6 | - | - | - | 42 | - | PE11 | I/O | FT | PE11 | | TIM1_CH2 | | J6 | - | - | - | 43 | - | PE12 | I/O | FT | PE12 | | TIM1_CH3N | | K6 | - | - | - | 44 | - | PE13 | I/O | FT | PE13 | | TIM1_CH3 | | G7 | - | - | - | 45 | - | PE14 | I/O | FT | PE14 | | TIM1_CH4 | | H7 | - | - | - | 46 | - | PE15 | I/O | FT | PE15 | | TIM1_BKIN | | J7 | 21 | G7 | 29 | 47 | - | PB10 | I/O | FT | PB10 | I2C2_SCL/
USART3_TX ⁽⁷⁾ | TIM2_CH3 | | K7 | 22 | H7 | 30 | 48 | - | PB11 | I/O | FT | PB11 | I2C2_SDA/
USART3_RX ⁽⁷⁾ | TIM2_CH4 | | E7 | 23 | D6 | 31 | 49 | 18 | V_{SS_1} | S | | V _{SS_1} | | | Table 5. Medium-density STM32F103xx pin definitions (continued) | | | Pin | ıs | | | <u>, </u> | | (2) | , | Alternate fu | unctions | |----------|--------|---------|--------|---------|----------|--|---------------------|----------------------------|--|--|--------------------------| | LFBGA100 | LQFP48 | TFBGA64 | LQFP64 | LQFP100 | VFQFPN36 | Pin name | Type ⁽¹⁾ | I / O Level ⁽²⁾ | Main
function ⁽³⁾
(after reset) | Default | Remap | | F7 | 24 | E6 | 32 | 50 | 19 | $V_{DD_{-1}}$ | S | | $V_{DD_{-1}}$ | | | | K8 | 25 | H8 | 33 | 51 | 1 | PB12 | I/O | FT | PB12 | SPI2_NSS/
I2C2_SMBAI/
USART3_CK ⁽⁷⁾ /
TIM1_BKIN ⁽⁷⁾ | | | J8 | 26 | G8 | 34 | 52 | 1 | PB13 | I/O | FT | PB13 | SPI2_SCK/
USART3_CTS ⁽⁷⁾ /
TIM1_CH1N ⁽⁷⁾ | | | Н8 | 27 | F8 | 35 | 53 | 1 | PB14 | I/O | FT | PB14 | SPI2_MISO/
USART3_RTS ⁽⁷⁾
TIM1_CH2N ⁽⁷⁾ | | | G8 | 28 | F7 | 36 | 54 | - | PB15 | I/O | FT | PB15 | SPI2_MOSI/
TIM1_CH3N ⁽⁷⁾ | | | K9 | - | - | - | 55 | - | PD8 | I/O | FT | PD8 | | USART3_TX | | J9 | - | - | - | 56 | - | PD9 | I/O | FT | PD9 | | USART3_RX | | Н9 | - | - | - | 57 | - | PD10 | I/O | FT | PD10 | | USART3_CK | | G9 | - | - | - | 58 | - | PD11 | I/O | FT | PD11 | | USART3_CTS | | K10 | - | - | - | 59 | - | PD12 | I/O | FT | PD12 | | TIM4_CH1 /
USART3_RTS | | J10 | - | - | - | 60 | - | PD13 | I/O | FT | PD13 | | TIM4_CH2 | | H10 | - | - | - | 61 | - | PD14 | I/O | FT | PD14 | | TIM4_CH3 | | G10 | • | | - | 62 | - | PD15 | I/O | FT | PD15 | | TIM4_CH4 | | F10 | - | F6 | 37 | 63 | - | PC6 | I/O | FT | PC6 | | TIM3_CH1 | | E10 | | E7 | 38 | 64 | - | PC7 | I/O | FT | PC7 | | TIM3_CH2 | | F9 | | E8 | 39 | 65 | - | PC8 | I/O | FT | PC8 | | TIM3_CH3 | | E9 | ı | D8 | 40 | 66 | - | PC9 | I/O | FT | PC9 | | TIM3_CH4 | | D9 | 29 | D7 | 41 | 67 | 20 | PA8 | I/O | FT | PA8 | USART1_CK/
TIM1_CH1 ⁽⁷⁾ /MCO | | | С9 | 30 | C7 | 42 | 68 | 21 | PA9 | I/O | FT | PA9 | USART1_TX ⁽⁷⁾ /
TIM1_CH2 ⁽⁷⁾ | | | D10 | 31 | C6 | 43 | 69 | 22 | PA10 | I/O | FT | PA10 | USART1_RX ⁽⁷⁾ /
TIM1_CH3 ⁽⁷⁾ | | | C10 | 32 | C8 | 44 | 70 | 23 | PA11 | I/O | FT | PA11 | USART1_CTS/
CANRX ⁽⁷⁾ / USBDM
TIM1_CH4 ⁽⁷⁾ | | | B10 | 33 | В8 | 45 | 71 | 24 | PA12 | I/O | FT | PA12 | USART1_RTS/
CANTX ⁽⁷⁾ //USBDP
TIM1_ETR ⁽⁷⁾ | | Table 5. Medium-density STM32F103xx pin definitions (continued) | | | Pir | ıs | | | | | (2) | - | Alternate | functions | |------------|--------|---------|--------|---------|----------|-------------|---------------------|----------------------------|--|--|--| | LFBGA100 | LQFP48 | TFBGA64 | LQFP64 | LQFP100 | VFQFPN36 | Pin name | Type ⁽¹⁾ | I / O Level ⁽²⁾ | Main
function ⁽³⁾
(after reset) | Default | Remap | | A10 | 34 | A8 | 46 | 72 | 25 | PA13 | I/O | FT | JTMS/SWDIO | | PA13 | | F8 | - | • | - | 73 | - | | | Not | connected | | | | E6 | 35 | D5 | 47 | 74 | 26 | V_{SS_2} | S | | V_{SS_2} | | | | F6 | 36 | E5 | 48 | 75 | 27 | V_{DD_2} | S | | V_{DD_2} | | | | A9 | 37 | A7 | 49 | 76 | 28 | PA14 | I/O | FT | JTCK/SWCLK | | PA14 | | A8 | 38 | A6 | 50 | 77 | 29 | PA15 | I/O | FT | JTDI | | TIM2_CH1_ETR/
PA15 /SPI1_NSS | | В9 | - | В7 | 51 | 78 | | PC10 | I/O | FT | PC10 | | USART3_TX | | B8 | - | В6 | 52 | 79 | | PC11 | I/O | FT | PC11 | | USART3_RX | | C8 | - | C5 | 53 | 80 | | PC12 | I/O | FT | PC12 | | USART3_CK | | D8 | 5 | C1 | 5 | 81 | 2 | PD0 | I/O | FT | OSC_IN ⁽⁸⁾ | | CANRX | | E8 | 6 | D1 | 6 | 82 | 3 | PD1 | I/O | FT | OSC_OUT ⁽⁸⁾ | | CANTX | | В7 | | B5 | 54 | 83 | - | PD2 | I/O | FT | PD2 | TIM3_ETR | | | C7 | - | - | - | 84 | - | PD3 | I/O | FT | PD3 | | USART2_CTS | | D7 | - | - | - | 85 | - | PD4 | I/O | FT | PD4 | | USART2_RTS | | В6 | - | - | - | 86 | - | PD5 | I/O | FT | PD5 | | USART2_TX | | C6 | - | - | - | 87 | - | PD6 | I/O | FT | PD6 | | USART2_RX | | D6 | - | - | - | 88 | - | PD7 | I/O | FT | PD7 | | USART2_CK | | A7 | 39 | A5 | 55 | 89 | 30 | PB3 | I/O | FT | JTDO | | TIM2_CH2 / PB3
TRACESWO
SPI1_SCK | | A6 | 40 | A4 | 56 | 90 | 31 | PB4 | I/O | FT | JNTRST | | TIM3_CH1/PB4/
SPI1_MISO | | | | | | | | | | | | | | | C5 | 41 | C4 | 57 | 91 | 32 | PB5 | I/O | | PB5 | I2C1_SMBAI | TIM3_CH2 /
SPI1_MOSI | | B5 | 42 | D3 | 58 | 92 | 33 | PB6 | I/O | FT | PB6 | I2C1_SCL ⁽⁷⁾ /
TIM4_CH1 ⁽⁷⁾ | USART1_TX | | A 5 | 43 | C3 | 59 | 93 | 34 | PB7 | I/O | FT | PB7 | I2C1_SDA ⁽⁷⁾ /
TIM4_CH2 ⁽⁷⁾ | USART1_RX | | D5 | 44 | В4 | 60 | 94 | 35 | BOOT0 | I | | воото | | | | B4 | 45 | В3 | 61 | 95 | - | PB8 | I/O | FT | PB8 | TIM4_CH3 ⁽⁷⁾ | I2C1_SCL /
CANRX | | A4 | 46 | А3 | 62 | 96 | - | PB9 | I/O | FT | PB9 | TIM4_CH4 ⁽⁷⁾ | I2C1_SDA/
CANTX | Table 5. Medium-density STM32F103xx pin definitions (continued) | | | Pin | ıs | | | | | (2) | | Alternate functions | | |----------|--------|---------|--------|---------|----------|-------------------|---------------------|----------------------------|--|---------------------|-------| | LFBGA100 | LQFP48 | TFBGA64 | LQFP64 | LQFP100 | VFQFPN36 | Pin name | Type ⁽¹⁾ | I / O Level ⁽²⁾ | Main
function ⁽³⁾
(after reset) | Default | Remap | | D4 | • | - | - | 97 | - | PE0 | I/O | FT | PE0 | TIM4_ETR | | | C4 | - | - | - | 98 | - | PE1 | I/O | FT | PE1 | | | | E5 | 47 | D4 | 63 | 99 | 36 | V _{SS_3} | S | | V _{SS_3} | | | | F5 | 48 | E4 | 64 | 100 | 1 | V_{DD_3} | S | | V_{DD_3} | | | - 1. I = input, O = output, S = supply, HiZ = high impedance. - 2. FT = 5 V tolerant. - 3. Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower number of peripheral that is included. For example, if a device has only one SPI and two USARTs, they will be called SPI1 and USART1 & USART2, respectively. Refer to *Table 2 on
page 10*. - 4. PC13, PC14 and PC15 are supplied through the power switch and since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 is restricted: only one I/O at a time can be used as an output, the speed has to be limited to 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED). - 5. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com. - 6. Unlike in the LQFP64 package, there is no PC3 in the TFBGA64 package. The V_{REF+} functionality is provided instead. - This alternate function can be remapped by software to some other port pins (if available on the used package). For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com. - 8. The pins number 2 and 3 in the VFQFPN36 package, 5 and 6 in the LQFP48 and LQFP64 packages, and C1 and C2 in the TFBGA64 package are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For the LQFP100 package, PD0 and PD1 are available by default, so there is no need for remapping. For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual. The use of PD0 and PD1 in output mode is limited as they can only be used at 50 MHz in output mode. # 4 Memory mapping The memory map is shown in Figure 9. Figure 9. Memory map # 5 Electrical characteristics ## 5.1 Parameter conditions Unless otherwise specified, all voltages are referenced to V_{SS}. #### 5.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A$ max (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$). # 5.1.2 Typical values Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 3.3$ V (for the 2 V \leq V_{DD} \leq 3.6 V voltage range). They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\Sigma$). # 5.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. # 5.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 10. # 5.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in *Figure 11*. Figure 10. Pin loading conditions Figure 11. Pin input voltage STM32F103xx pin STM32F103xx pin C = 50 pFai14141 ai14142 #### **Power supply scheme** 5.1.6 Figure 12. Power supply scheme Caution: In *Figure 12*, the 4.7 μ F capacitor must be connected to V_{DD3} . # 5.1.7 Current consumption measurement Figure 13. Current consumption measurement scheme # 5.2 Absolute maximum ratings Stresses above the absolute maximum ratings listed in *Table 6: Voltage characteristics*, *Table 7: Current characteristics*, and *Table 8: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 6. Voltage characteristics | Symbol | Ratings | Min | Max | Unit | |----------------------------------|---|--|----------------------|-------| | Symbol | Hattiigs | IVIIII | IVIAX | Oilit | | V _{DD} -V _{SS} | External main supply voltage (including V_{DDA} and V_{DD}) ⁽¹⁾ | -0.3 | 4.0 | | | V | Input voltage on five volt tolerant pin ⁽²⁾ | V _{SS} – 0.3 | +5.5 | V | | V _{IN} | Input voltage on any other pin ⁽²⁾ | V _{SS} – 0.3 | V _{DD} +0.3 | | | $ \Delta V_{DDx} $ | Variations between different V _{DD} power pins | | 50 | mV | | $ V_{SSX} - V_{SS} $ | Variations between all the different ground pins | | 50 | 1110 | | V _{ESD(HBM)} | Electrostatic discharge voltage (human body model) | see Section 5
Absolute max
(electrical ser | imum ratings | | All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range. I_{INJ(PIN)} must never be exceeded (see *Table 7: Current characteristics*). This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN} > V_{IN}max while a negative injection is induced by V_{IN} < V_{SS}. Ratings **Symbol** Unit Max. Total current into V_{DD}/V_{DDA} power lines (source)⁽¹⁾ 150 I_{VDD} Total current out of V_{SS} ground lines (sink)⁽¹⁾ 150 I_{VSS} Output current sunk by any I/O and control pin 25 I_{10} Output current source by any I/Os and control pin **- 25** mΑ Injected current on NRST pin ± 5 I_{INJ(PIN)} (2)(3) Injected current on HSE OSC_IN and LSE OSC_IN pins ± 5 Injected current on any other pin⁽⁴⁾ ± 5 $\Sigma I_{\text{INJ(PIN)}}^{(2)}$ Total injected current (sum of all I/O and control pins) (4) ± 25 Table 7. Current characteristics - All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range. - 2. $I_{INJ(PIN)}$ must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the $I_{INJ(PIN)}$ value. A positive injection is induced by $V_{IN} > V_{DD}$ while a negative injection is induced by $V_{IN} < V_{SS}$. - 3. Negative injection disturbs the analog performance of the device. See note in Section 5.3.17: 12-bit ADC characteristics. - 4. When several inputs are submitted to a current injection, the maximum ΣI_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with ΣI_{INJ(PIN)} maximum current injection on four I/O port pins of the device. Table 8. Thermal characteristics | Symbol | Ratings | Value | Unit | |------------------|------------------------------|-------------|------| | T _{STG} | Storage temperature range | -65 to +150 | °C | | T _J | Maximum junction temperature | 150 | °C | # 5.3 Operating conditions # 5.3.1 General operating conditions Table 9. General operating conditions | Symbol | Parameter | Conditions | Min | Max | Unit | |---------------------------------|---|-----------------------------------|-----|-----|------| | f _{HCLK} | Internal AHB clock frequency | | 0 | 72 | | | f _{PCLK1} | Internal APB1 clock frequency | | 0 | 36 | MHz | | f _{PCLK2} | Internal APB2 clock frequency | | 0 | 72 | | | V_{DD} | Standard operating voltage | | 2 | 3.6 | V | | V _{DDA} ⁽¹⁾ | Analog operating voltage (ADC not used) | Must be the same potential | 2 | 3.6 | V | | VDDA` ′ | Analog operating voltage (ADC used) | as V _{DD} ⁽²⁾ | 2.4 | 3.6 | V | | V _{BAT} | Backup operating voltage | | 1.8 | 3.6 | V | -40 125 °С TJ | Symbol | Parameter | Conditions | Min | Max | Unit | |---------|---|--|-----|------|------| | | | LFBGA100 | | 454 | | | | | LQFP100 | | 434 | | | В | Power dissipation at T _A = 85 °C | TFBGA64 | | 308 | \^/ | | P_{D} | P_D for suffix 6 or $T_A = 105$ °C for suffix $7^{(3)}$ | LQFP64 | | 444 | mW | | | | LQFP48 | | | | | | | VFQFPN36 | | 1110 | | | | Ambient temperature for 6 | Maximum power dissipation | -40 | 85 | ့င | | т. | suffix version | version Low power dissipation ⁽⁴⁾ | | | | | TA | Ambient temperature for 7 | Maximum power dissipation | -40 | 105 | ٥, | | | suffix version | Low power dissipation ⁽⁴⁾ | -40 | 125 | °C | | | | 6 suffix version | -40 | 105 | | Table 9. General operating conditions (continued) Junction temperature range 7 suffix version # 5.3.2 Operating conditions at power-up / power-down Subject to general operating conditions for T_A. Table 10. Operating conditions at power-up / power-down | Symbol | Parameter | Conditions | Min | Max | Unit | |------------------|--------------------------------|------------|-----|----------|-------| | | V _{DD} rise time rate | | 0 | ∞ | us/V | | t _{VDD} | V _{DD} fall time rate | | 20 | 8 | μ5/ V | ### 5.3.3 Embedded reset and power control block characteristics The parameters given in *Table 11* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*. ^{1.} When the ADC is used, refer to Table 45: ADC characteristics. ^{2.} It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and
operation. ^{3.} If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_Jmax (see *Table 6.2: Thermal characteristics on page 81*). In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_Jmax (see Table 6.2: Thermal characteristics on page 81). Table 11. Embedded reset and power control block characteristics | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |--------------------------------------|--------------------------|-----------------------------|--------------------|------|------|------| | | | PLS[2:0]=000 (rising edge) | 2.1 | 2.18 | 2.26 | V | | | | PLS[2:0]=000 (falling edge) | 2 | 2.08 | 2.16 | V | | | | PLS[2:0]=001 (rising edge) | 2.19 | 2.28 | 2.37 | V | | | 1 | PLS[2:0]=001 (falling edge) | 2.09 | 2.18 | 2.27 | V | | | | PLS[2:0]=010 (rising edge) | 2.28 | 2.38 | 2.48 | V | | | | PLS[2:0]=010 (falling edge) | 2.18 | 2.28 | 2.38 | V | | V | | PLS[2:0]=011 (rising edge) | 2.38 | 2.48 | 2.58 | V | | | Programmable voltage | PLS[2:0]=011 (falling edge) | 2.28 | 2.38 | 2.48 | V | | V _{PVD} | detector level selection | PLS[2:0]=100 (rising edge) | 2.47 | 2.58 | 2.69 | V | | | | PLS[2:0]=100 (falling edge) | 2.37 | 2.48 | 2.59 | ٧ | | | | PLS[2:0]=101 (rising edge) | 2.57 | 2.68 | 2.79 | V | | | | PLS[2:0]=101 (falling edge) | 2.47 | 2.58 | 2.69 | ٧ | | | | PLS[2:0]=110 (rising edge) | 2.66 | 2.78 | 2.9 | V | | | | PLS[2:0]=110 (falling edge) | 2.56 | 2.68 | 2.8 | V | | | | PLS[2:0]=111 (rising edge) | 2.76 | 2.88 | 3 | V | | | | PLS[2:0]=111 (falling edge) | 2.66 | 2.78 | 2.9 | V | | V _{PVDhyst} ⁽²⁾ | PVD hysteresis | | | 100 | | mV | | V | Power on/power down | Falling edge | 1.8 ⁽¹⁾ | 1.88 | 1.96 | V | | V _{POR/PDR} | reset threshold | Rising edge | 1.84 | 1.92 | 2.0 | V | | V _{PDRhyst} ⁽²⁾ | PDR hysteresis | | | 40 | | mV | | T _{RSTTEMPO} ⁽²⁾ | Reset temporization | | 1 | 2.5 | 4.5 | ms | ^{1.} The product behavior is guaranteed by design down to the minimum $\rm V_{POR/PDR}$ value. ^{2.} Guaranteed by design, not tested in production. ### 5.3.4 Embedded reference voltage The parameters given in *Table 12* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*. Table 12. Embedded internal reference voltage | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |----------------------------|---|-----------------------------------|------|------|---------------------|------| | V _{REFINT} | Internal reference voltage | -40 °C < T _A < +105 °C | 1.16 | 1.20 | 1.26 | V | | | | -40 °C < T _A < +85 °C | 1.16 | 1.20 | 1.24 | V | | T _{S_vrefint} (1) | ADC sampling time when reading the internal reference voltage | | | 5.1 | 17.1 ⁽²⁾ | μs | - 1. Shortest sampling time can be determined in the application by multiple iterations. - 2. Guaranteed by design, not tested in production. ## 5.3.5 Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in *Figure 13: Current consumption measurement scheme*. All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code. #### **Maximum current consumption** The MCU is placed under the following conditions: - All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load) - All peripherals are disabled except when explicitly mentioned - The Flash memory access time is adjusted to the f_{HCLK} frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above) - Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling) - When the peripherals are enabled f_{PCLK1} = f_{HCLK}/2, f_{PCLK2} = f_{HCLK} The parameters given in *Table 13*, *Table 14* and *Table 15* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*. Table 13. Maximum current consumption in Run mode, code with data processing running from Flash | Cumhal | Dawamatay | Conditions | 4 | Ma | ax ⁽¹⁾ | l loo!4 | |-----------------|-------------------------------|---|--------|------------------------|-------------------------|---------| | Symbol | Parameter | | fHCLK | T _A = 85 °C | T _A = 105 °C | Unit | | | | External clock ⁽²⁾ , all peripherals enabled | 72 MHz | 50 | 50.3 | | | | | | 48 MHz | 36.1 | 36.2 | | | | | | 36 MHz | 28.6 | 28.7 | | | | Supply current in
Run mode | | 24 MHz | 19.9 | 20.1 | | | | | | 16 MHz | 14.7 | 14.9 | | | | | | 8 MHz | 8.6 | 8.9 | m 1 | | I _{DD} | | | 72 MHz | 32.8 | 32.9 | - mA | | | | | 48 MHz | 24.4 | 24.5 | | | | | External clock ⁽²⁾ , all | 36 MHz | 19.8 | 19.9 | | | | | peripherals disabled | 24 MHz | 13.9 | 14.2 | | | | | | 16 MHz | 10.7 | 11 | | | | | | 8 MHz | 6.8 | 7.1 | | ^{1.} Based on characterization, not tested in production. Table 14. Maximum current consumption in Run mode, code with data processing running from RAM | Symbol | Parameter | Conditions | f | Ma | Unit | | |-----------------|----------------------------------|---|--------|------------------------|-------------------------|-------| | Symbol | Farameter | | fHCLK | T _A = 85 °C | T _A = 105 °C | Oilit | | | | | 72 MHz | 48 | 50 | | | | | | 48 MHz | 31.5 | 32 | | | | | External clock ⁽²⁾ , all peripherals enabled | 36 MHz | 24 | 25.5 | | | | Supply
current in
Run mode | | 24 MHz | 17.5 | 18 | | | | | | 16 MHz | 12.5 | 13 | | | | | | 8 MHz | 7.5 | 8 | mA | | I _{DD} | | | 72 MHz | 29 | 29.5 | IIIA | | | | | 48 MHz | 20.5 | 21 | | | | | External clock ⁽²⁾ , all | 36 MHz | 16 | 16.5 | | | | | peripherals disabled | 24 MHz | 11.5 | 12 | | | | | | 16 MHz | 8.5 | 9 | | | | | | 8 MHz | 5.5 | 6 | | ^{1.} Based on characterization, tested in production at $V_{DD}\,\text{max}$, $f_{HCLK}\,\text{max}$. ^{2.} External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz. ^{2.} External clock is 8 MHz and PLL is on when $f_{HCLK} > 8$ MHz. Figure 14. Typical current consumption in Run mode versus frequency (at 3.6 V) - code with data processing running from RAM, peripherals enabled Table 15. Maximum current consumption in Sleep mode, code running from Flash or RAM | Symbol | Parameter | Conditions | f . | Max | (⁽¹⁾ | Unit | |-----------------|-------------------|-------------------------------------|-------------------|------------------------|-------------------------|-------| | Symbol | rarameter | Conditions | f _{HCLK} | T _A = 85 °C | T _A = 105 °C | Oilit | | | | | 72 MHz | 30 | 32 | | | | | | 48 MHz | 20 | 20.5 | | | | | External clock ⁽²⁾ , all | 36 MHz | 15.5 | 16 | | | | | peripherals enabled | 24 MHz | 11.5 | 12 | | | | | | 16 MHz | 8.5 | 9 | | | ı | Supply current in | | 8 MHz | 5.5 | 6 | mA | | I _{DD} | Sleep mode | | 72 MHz | 7.5 | 8 | ША | | | | | 48 MHz | 6 | 6.5 | | | | | External clock ⁽²⁾ , all | 36 MHz | 5 | 5.5 | | | | | peripherals disabled | 24 MHz | 4.5 | 5 | | | | | | 16 MHz | 4 | 4.5 | | | | | | 8 MHz | 3 | 4 | | ^{1.} based on characterization, tested in production at $V_{DD\ max}$, f_{HCLK} max with peripherals enabled. ^{2.} External clock is 8 MHz and PLL is on when $f_{\mbox{\scriptsize HCLK}}$ > 8 MHz. Table 16. Typical and maximum current consumptions in Stop and Standby modes | | | | Туј | o ⁽¹⁾ | Max | | | |----------------------|--------------------------------|---|--|--|---------------------------|----------------------------|------| | Symbol | Parameter | Conditions | V _{DD} /V _{BAT}
= 2.4 V | V _{DD} /V _{BAT}
= 3.3 V | T _A =
85 °C | T _A =
105 °C | Unit | | I _{DD} | Supply current in Stop mode | Regulator in Run mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) | 23.5 | 24 | 200 | 370 | | | | | Regulator in Low Power mode, low-
speed and high-speed internal RC
oscillators and high-speed oscillator
OFF (no independent watchdog) | 13.5 | 14 | 180 | 340 | | | | | Low-speed internal RC oscillator and independent watchdog ON | 2.6 | 3.4 | - | - | μΑ | | | Supply current in Standby mode | Low-speed internal RC oscillator ON, independent watchdog OFF | 2.4 | 3.2 | - | - | | | | , | Low-speed internal RC oscillator and independent watchdog OFF, low-speed oscillator and RTC OFF | 1.7 | 2 | 4 | 5 | | | I _{DD_VBAT} | Backup domain supply current | Low-speed oscillator and RTC ON | 1.1 | 1.4 | 1.9 ⁽²⁾ | 2.2 | | ^{1.} Typical values are measured at $T_A = 25$ °C. Figure 16. Typical current consumption in Stop mode with regulator in Run mode versus temperature at V_{DD} = 3.3 V and 3.6 V ^{2.} Based on characterization, not tested in production. Figure 17. Typical current consumption in Stop mode with regulator in Low-power mode versus temperature at V_{DD} = 3.3 V and 3.6 V Figure 18. Typical current consumption in Standby mode versus temperature at $V_{DD} = 3.3 \ V$ and 3.6 V #### **Typical current consumption** The MCU is placed under the following conditions: - All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load). - All peripherals are disabled except if it is explicitly mentioned. - The Flash access time is adjusted to f_{HCLK} frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above). - Ambient temperature and V_{DD} supply voltage
conditions summarized in Table 9. - Prefetch is ON (Reminder: this bit must be set before clock setting and bus prescaling) - When the peripherals are enabled $f_{PCLK1} = f_{HCLK}/4$, $f_{PCLK2} = f_{HCLK}/2$, $f_{ADCCLK} = f_{PCLK2}/4$ Table 17. Typical current consumption in Run mode, code with data processing running from Flash | | | | | Ту | p ⁽¹⁾ | | | |-----------------|----------------------------------|-------------------------------|-------------------|--|--------------------------|------|--| | Symbol | Parameter | Conditions | f _{HCLK} | All peripherals enabled ⁽²⁾ | All peripherals disabled | Unit | | | | | | 72 MHz | 36 | 27 | | | | | | | 48 MHz | 24.2 | 18.6 | | | | | | | 36 MHz | 19 | 14.8 | | | | | | | 24 MHz | 12.9 | 10.1 | | | | | | | 16 MHz | 9.3 | 7.4 | | | | | | External clock ⁽³⁾ | 8 MHz | 5.5 | 4.6 | mA | | | | Supply
current in
Run mode | | 4 MHz | 3.3 | 2.8 | | | | | | | 2 MHz | 2.2 | 1.9 | | | | | | | 1 MHz | 1.6 | 1.45 | | | | | | | 500 kHz | 1.3 | 1.25 | | | | | | | 125 kHz | 1.08 | 1.06 | | | | I _{DD} | | | 64 MHz | 31.4 | 23.9 | | | | | | | 48 MHz | 23.5 | 17.9 | | | | | | | 36 MHz | 18.3 | 14.1 | | | | | | Running on high | 24 MHz | 12.2 | 9.5 | | | | | | speed internal RC | 16 MHz | 8.5 | 6.8 | | | | | | (HSI), AHB prescaler used to | 8 MHz | 4.9 | 4 | mA | | | | | reduce the | 4 MHz | 2.7 | 2.2 | | | | | | frequency | 2 MHz | 1.6 | 1.4 | | | | | | | 1 MHz | 1.02 | 0.9 | | | | | | | 500 kHz | 0.73 | 0.67 | | | | | | | 125 kHz | 0.5 | 0.48 | | | ^{1.} Typical values are measures at T_A = 25 °C, V_{DD} = 3.3 V. ^{2.} Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register). ^{3.} External clock is 8 MHz and PLL is on when $f_{HCLK} > 8$ MHz. Table 18. Typical current consumption in Sleep mode, code running from Flash or RAM | | | | | Туј | o ⁽¹⁾ | | |-----------------|------------------------------------|-----------------------------------|-------------------|--|--------------------------|------| | Symbol | Parameter | Conditions | f _{HCLK} | All peripherals enabled ⁽²⁾ | All peripherals disabled | Unit | | | | | 72 MHz | 14.4 | 5.5 | | | | | | 48 MHz | 9.9 | 3.9 | | | | | | 36 MHz | 7.6 | 3.1 | | | | | | 24 MHz | 5.3 | 2.3 | | | | | | 16 MHz | 3.8 | 1.8 | | | | | External clock ⁽³⁾ | 8 MHz | 2.1 | 1.2 | | | | | | 4 MHz | 1.6 | 1.1 | | | | Supply
current in
Sleep mode | | 2 MHz | 1.3 | 1 | | | | | | 1 MHz | 1.11 | 0.98 | | | | | | 500 kHz | 1.04 | 0.96 | | | 1 | | | 125 kHz | 0.98 | 0.95 | mA | | I _{DD} | | | 64 MHz | 12.3 | 4.4 | шА | | | | | 48 MHz | 9.3 | 3.3 | | | | | | 36 MHz | 7 | 2.5 | | | | | | 24 MHz | 4.8 | 1.8 | | | | | Running on high speed internal RC | 16 MHz | 3.2 | 1.2 | | | | | (HSI), AHB prescaler | 8 MHz | 1.6 | 0.6 | | | | | used to reduce the frequency | 4 MHz | 1 | 0.5 | | | | | , , , , | 2 MHz | 0.72 | 0.47 | | | | | | 1 MHz | 0.56 | 0.44 | | | | | | 500 kHz | 0.49 | 0.42 | | | | | | 125 kHz | 0.43 | 0.41 | | ^{1.} Typical values are measures at T_A = 25 °C, V_{DD} = 3.3 V. ^{2.} Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register). ^{3.} External clock is 8 MHz and PLL is on when $f_{HCLK} > 8$ MHz. ### On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in *Table 19*. The MCU is placed under the following conditions: - all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load) - all peripherals are disabled unless otherwise mentioned - the given value is calculated by measuring the current consumption - with all peripherals clocked off - with only one peripheral clocked on - ambient operating temperature and V_{DD} supply voltage conditions summarized in Table 6 Table 19. Peripheral current consumption⁽¹⁾ | | Peripheral | Typical consumption at 25 °C | Unit | |------|---------------------|------------------------------|------| | | TIM2 | 1.2 | | | | TIM3 | 1.2 | | | | TIM4 | 0.9 | | | | SPI2 | 0.2 | | | APB1 | USART2 | 0.35 | т Л | | APDI | USART3 | 0.35 | mA | | | I2C1 | 0.39 | | | | 12C2 | 0.39 | | | | USB | 0.65 | | | | CAN | 0.72 | | | | GPIO A | 0.47 | | | | GPIO B | 0.47 | | | | GPIO C | 0.47 | | | | GPIO D | 0.47 | | | APB2 | GPIO E | 0.47 | mA | | APD2 | ADC1 ⁽²⁾ | 1.81 | MA | | | ADC2 | 1.78 | | | | TIM1 | 1.6 | | | | SPI1 | 0.43 | | | | USART1 | 0.85 | | ^{1.} $f_{HCLK} = 72$ MHz, $f_{APB1} = f_{HCLK}/2$, $f_{APB2} = f_{HCLK}$, default prescaler value for each peripheral. ^{2.} Specific conditions for ADC: $f_{HCLK} = 56$ MHz, $f_{APB1} = f_{HCLK}/2$, $f_{APB2} = f_{HCLK}$, $f_{ADCCLK} = f_{APB2/4}$, ADON bit in the ADC_CR2 register is set to 1. #### 5.3.6 External clock source characteristics ### High-speed external user clock generated from an external source The characteristics given in *Table 20* result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 9*. Table 20. High-speed external user clock characteristics | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |---|---|---------------------------------|--------------------|-----|--------------------|------| | f _{HSE_ext} | User external clock source frequency ⁽¹⁾ | | 0 | 8 | 25 | MHz | | V _{HSEH} | OSC_IN input pin high level voltage | | 0.7V _{DD} | | V_{DD} | V | | V _{HSEL} | OSC_IN input pin low level voltage | | V_{SS} | | 0.3V _{DD} | V | | $\begin{array}{c} t_{w(\text{HSE})} \\ t_{w(\text{HSE})} \end{array}$ | OSC_IN high or low time ⁽¹⁾ | | 16 | | | ns | | t _{r(HSE)} | OSC_IN rise or fall time ⁽¹⁾ | | | | 20 | 113 | | C _{in(HSE)} | OSC_IN input capacitance ⁽¹⁾ | | | 5 | | pF | | DuCy _(HSE) | Duty cycle | | 45 | · | 55 | % | | IL | OSC_IN Input leakage current | $V_{SS} \leq V_{IN} \leq V_{D}$ | | | ±1 | μΑ | ^{1.} Guaranteed by design, not tested in production. #### Low-speed external user clock generated from an external source The characteristics given in *Table 21* result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 9*. Table 21. Low-speed external user clock characteristics | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |---|---|---------------------------------|--------------------|--------|--------------------|------| | f _{LSE_ext} | User External clock source frequency ⁽¹⁾ | | | 32.768 | 1000 | kHz | | V _{LSEH} | OSC32_IN input pin high level voltage | | 0.7V _{DD} | | V_{DD} | V | | V _{LSEL} | OSC32_IN input pin low level voltage | | V _{SS} | | 0.3V _{DD} | V | | $\begin{array}{c} t_{\text{W(LSE)}} \\ t_{\text{W(LSE)}} \end{array}$ | OSC32_IN high or low time ⁽¹⁾ | | 450 | | | ns | | $\begin{array}{c} t_{r(\text{LSE})} \\ t_{f(\text{LSE})} \end{array}$ | OSC32_IN rise or fall time ⁽¹⁾ | | | | 50 | 10 | | C _{in(LSE)} | OSC32_IN input capacitance ⁽¹⁾ | | | 5 | | pF | | DuCy _(LSE) | Duty cycle | | 30 | | 70 | % | | IL | OSC32_IN Input leakage current | $V_{SS} \leq V_{IN} \leq V_{D}$ | | | ±1 | μΑ | Guaranteed by design, not tested in production. Figure 20. Low-speed external clock source AC timing diagram ### High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 22*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |---|--|---|-----|-----|-----|------| | f _{OSC_IN} | Oscillator frequency | | 4 | 8 | 16 | MHz | | R _F | Feedback resistor | | | 200 | | kΩ | | C _{L1}
C _{L2} ⁽³⁾ | Recommended load capacitance versus equivalent serial resistance of the crystal (R _S) ⁽⁴⁾ | R _S = 30 Ω | | 30 | | pF | | i ₂ | HSE driving current | V_{DD} = 3.3 V, V_{IN} = V_{SS} with 30 pF load | | | 1 | mA | | 9 _m | Oscillator transconductance | Startup | 25 | | | mA/V | | t _{SU(HSE} ⁽⁵⁾ | startup time | V _{DD} is stabilized | | 2 | | ms | Table 22. HSE 4-16 MHz oscillator characteristics⁽¹⁾ (2) - 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. - 2. Based on characterization, not tested in production. - 3. For C_{L1} and C_{L2} it is recommended to use high-quality ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator. C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} . - 4. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a
humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions. - t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer Resonator with integrated capacitors STM32F103xx Bias controlled gain STM32F103xx ai14145 Figure 21. Typical application with an 8 MHz crystal 1. R_{EXT} value depends on the crystal characteristics. Typical value is in the range of 5 to $6R_{\text{S}}$. ## Low-speed external clock generated from a crystal/ceramic resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 23*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Note: For C_{L1} and C_{L2} it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator. C_{L1} and C_{L2} , are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . Load capacitance C_L has the following formula: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$ where C_{stray} is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF. Caution: To avoid exceeding the maximum value of C_{L1} and C_{L2} (15 pF) it is strongly recommended to use a resonator with a load capacitance $C_L \le 7$ pF. Never use a resonator with a load capacitance of 12.5 pF. **Example:** if you choose a resonator with a load capacitance of $C_L = 6$ pF, and $C_{stray} = 2$ pF, then $C_{L1} = C_{L2} = 8$ pF. | Table 23. | LSE oscillator characteristics ($f_{LSE} = 32.768 \text{ kHz}$) (1) | |-----------|---| | | | | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |---|--|---|-----|-----|-----|---------------| | R_{F} | Feedback resistor | | | 5 | | МΩ | | C _{L1}
C _{L2} ⁽²⁾ | Recommended load capacitance versus equivalent serial resistance of the crystal (R _S) ⁽³⁾ | R _S = 30 kΩ | | | 15 | pF | | l ₂ | LSE driving current | $V_{DD} = 3.3 \text{ V}, V_{IN} = V_{SS}$ | | | 1.4 | μA | | 9 _m | Oscillator Transconductance | | 5 | | | μ A /V | | $t_{\text{SU(LSE)}}^{(4)}$ | startup time | V _{DD} is stabilized | | 3 | | s | - 1. Based on characterization, not tested in production. - 2. Refer to the note and caution paragraphs above the table. - The oscillator selection can be optimized in terms of supply current using an high quality resonator with small R_S value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details - t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer Figure 22. Typical application with a 32.768 kHz crystal ### 5.3.7 Internal clock source characteristics The parameters given in *Table 24* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*. ### High-speed internal (HSI) RC oscillator Table 24. HSI oscillator characteristics⁽¹⁾ (2) | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |----------------------|----------------------------------|--|------|-----|-----|------| | f _{HSI} | Frequency | | | 8 | | MHz | | | | $T_A = -40 \text{ to } 105 ^{\circ}\text{C}$ | -2 | ±1 | 2.5 | % | | ACC _{HSI} | Accuracy of HSI oscillator | $T_A = -10$ to 85 °C | -1.5 | ±1 | 2.2 | % | | ACCHSI | | T _A = 0 to 70 °C | -1.3 | ±1 | 2 | % | | | | T _A = 25 °C | -1.1 | ±1 | 1.8 | % | | t _{su(HSI)} | HSI oscillator startup time | | 1 | | 2 | μs | | I _{DD(HSI)} | HSI oscillator power consumption | | | 80 | 100 | μА | ^{1.} Guaranteed by design, not tested in production. #### Low-speed internal (LSI) RC oscillator Table 25. LSI oscillator characteristics (1) | Symbol | Parameter | | Тур | Max | Unit | |-------------------------------------|----------------------------------|----|------|-----|------| | f _{LSI} ⁽²⁾ | Frequency | 30 | 40 | 60 | kHz | | t _{su(LSI)} (3) | LSI oscillator startup time | | | 85 | μs | | I _{DD(LSI)} ⁽³⁾ | LSI oscillator power consumption | | 0.65 | 1.2 | μΑ | ^{1.} V_{DD} = 3 V, T_A = -40 to 105 °C unless otherwise specified. #### Wakeup time from low-power mode The wakeup times given in *Table 26* is measured on a wakeup phase with a 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode: - Stop or Standby mode: the clock source is the RC oscillator - Sleep mode: the clock source is the clock that was set before entering Sleep mode. All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*. ^{2.} $V_{DD} = 3.3 \text{ V}$, $T_A = -40 \text{ to } 105 \,^{\circ}\text{C}$ unless otherwise specified. ^{2.} Based on characterization, not tested in production. ^{3.} Guaranteed by design, not tested in production. | | -on ponor mone namoup | 99 | | | |-------------------------------------|---|--|-----|------| | Symbol Parameter Condition | | Conditions | Тур | Unit | | t _{WUSLEEP} (1) | Wakeup from Sleep mode | Wakeup on HSI RC clock | 1.8 | μs | | ÷ (1) | Wakeup from Stop mode (regulator in run mode) | HSI RC wakeup time = 2 μs | 3.6 | | | t _{WUSTOP} (1) | Wakeup from Stop mode (regulator in low power mode) | HSI RC wakeup time = 2 μs, Regulator wakeup from LP mode time = 5 μs | 5.4 | μs | | t _{WUSTDBY} ⁽¹⁾ | Wakeup from Standby mode | HSI RC wakeup time = 2 μs, Regulator | 50 | μs | wakeup from power down time = 38 μ s Table 26. Low-power mode wakeup timings #### 5.3.8 **PLL characteristics** The parameters given in *Table 27* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*. Table 27. **PLL** characteristics | Symbol | Parameter | Test conditions | | Unit | | | |----------------------|--------------------------------|-----------------|--------------------|------|--------------------|-------| | | | | Min ⁽¹⁾ | Тур | Max ⁽¹⁾ | Oilit | | · | PLL input clock ⁽²⁾ | | 1 | 8.0 | 25 | MHz | | f _{PLL_IN} | PLL input clock duty cycle | | 40 | | 60 | % | | f _{PLL_OUT} | PLL multiplier output clock | | 16 | | 72 | MHz | | t _{LOCK} | PLL lock time | | | | 200 | μs | ^{1.} Based on characterization, not tested in production. #### **Memory characteristics** 5.3.9 #### Flash memory The characteristics are given at $T_A = -40$ to 105 °C unless otherwise specified. Table 28. Flash memory characteristics | Symbol | Parameter | Conditions | Min ⁽¹⁾ | Тур | Max ⁽¹⁾ | Unit | |--------------------|-------------------------|---|--------------------|------|--------------------|------| | t _{prog} | 16-bit programming time | $T_A = -40 \text{ to } +105 ^{\circ}\text{C}$ | 40 | 52.5 | 70 | μs | | t _{ERASE} | Page (1 KB) erase time | $T_A = -40 \text{ to } +105 ^{\circ}\text{C}$ | 20 | | 40 | ms | | t _{ME} | Mass erase time | $T_A = -40 \text{ to } +105 \text{ °C}$ | 20 | | 40 | ms | The wakeup times are measured from the wakeup event to the point in which the user application code reads the first instruction. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by $f_{\text{PLL_OUT}}$. | Symbol | Parameter | Conditions | Min ⁽¹⁾ | Тур | Max ⁽¹⁾ | Unit | |----------------------------|---------------------|--|--------------------|-----|--------------------|------| | I _{DD} Supply cur | | Read mode
f _{HCLK} = 72 MHz with 2 wait
states, V _{DD} = 3.3 V | | | 20 | mA | | | Supply current | Write / Erase modes
f _{HCLK} = 72 MHz, V _{DD} = 3.3 V | | | 5 | mA | | | | Power-down mode / Halt,
V _{DD} = 3.0 to 3.6 V | | | 50 | μΑ | | V _{prog} | Programming voltage | | 2 | | 3.6 | V | Table 28. Flash memory characteristics (continued) Table 29. Flash memory endurance and data retention | Cumbal | Parameter | Parameter Conditions | | Value | | | | Unit | |------------------|----------------|---|--------------------|-------|-----|---------|--|------| | Symbol | Parameter | Conditions | Min ⁽¹⁾ | Тур | Max | Offic | | | | N _{END} | Endurance | $T_A = -40$ to +85 °C (6 suffix versions)
$T_A = -40$ to +105 °C (7 suffix versions) | 10 | | | kcycles | | | | | | 1 kcycle ⁽²⁾ at T _A = 85 °C | 30 | | | | | | | t _{RET} | Data retention | 1 kcycle ⁽²⁾ at T _A = 105 °C | 10 | | | Years | | | | | | 10 kcycles ⁽²⁾ at T _A = 55 °C | 20 | | | | | | ^{1.} Based on characterization, not tested in production. #### 5.3.10 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization. #### Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: - **Electrostatic discharge (ESD)** (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 1000-4-2 standard. - FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 1000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in *Table 30*. They are based on the EMS levels and classes defined in application note AN1709. ^{1.} Guaranteed by design, not tested in production. ^{2.} Cycling performed over the whole temperature range. Table 30. EMS characteristics | Symbol | Parameter | Conditions | Level/
Class | |-------------------|---|--|-----------------| | V _{FESD} | Voltage limits to be applied on any I/O pin to induce a functional disturbance | V_{DD} = 3.3 V, T_A = +25 °C, f_{HCLK} = 72 MHz conforms to IEC 1000-4-2 | 2B | | V _{EFTB} | Fast transient voltage burst limits to be applied through 100 pF on V _{DD} and V _{SS} pins to induce a functional disturbance | V_{DD} = 3.3 V, T_A = +25 °C, f_{HCLK} = 72 MHz conforms to IEC 1000-4-4 | 4A | #### Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. #### Software recommendations The software flowchart must include the management of runaway conditions such as: - Corrupted program counter - Unexpected reset - Critical Data corruption (control registers...) #### **Prequalification trials** Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). #### **Electromagnetic Interference (EMI)** The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with SAE J 1752/3 standard which specifies the test board and the pin loading. Table 31. EMI characteristics | Symbol | Parameter | Conditions | Monitored | Max vs. [f | HSE/fHCLK] | Unit | |-----------------------------|---|--------------------------------|-----------------|------------|------------|-------| | Symbol | raiailletei | Conditions | frequency band | 8/48 MHz | 8/72 MHz | Oilit | | S _{EMI} Peak level | | V 00V T 0500 | 0.1 to 30 MHz | 12 | 12 | | | | $V_{DD} = 3.3 \text{ V}, T_A = 25 \text{ °C},$
LQFP100 package | 30 to 130 MHz | 22 | 19 | dΒμV | | | | reak level | compliant with SAE J
1752/3 | 130 MHz to 1GHz | 23 | 29 | | | | | | SAE EMI Level | 4 | 4 | - | ### 5.3.11 Absolute maximum ratings (electrical sensitivity) Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. #### Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard. Table 32. ESD absolute maximum ratings | Symbol | Ratings | Conditions | Class | Maximum value ⁽¹⁾ | Unit | |-----------------------|---|---|-------|------------------------------|------| | V _{ESD(HBM)} | Electrostatic discharge voltage (human body model) | T _A = +25 °C
conforming to
JESD22-A114 | 2 | 2000 | V | | V _{ESD(CDM)} | Electrostatic discharge
voltage (charge device
model) | T _A = +25 °C
conforming to
JESD22-C101 | II | 500 | V | ^{1.} Based on characterization results, not tested in production. #### Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: - A supply overvoltage is applied to each power supply pin - A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD 78A IC latch-up standard. Table 33. Electrical sensitivities | Symbol | Parameter | Conditions | Class | |--------|-----------------------|--|------------| | LU | Static latch-up class | T _A = +105 °C conforming to JESD78A | II level A | ### 5.3.12 I/O port characteristics ## General input/output characteristics Unless otherwise specified, the parameters given in *Table 34* are derived from tests performed under the conditions summarized in *Table 9*. All I/Os are CMOS and TTL compliant. Table 34. I/O static characteristics | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |------------------|---|---|-----------------------------------|-----|----------------------|------| | V_{IL} | Input low level voltage | | -0.5 | | 0.8 | | | V _{IH} | Standard IO input high level voltage | TTL ports | 2 | | V _{DD} +0.5 | V | | | IO FT ⁽¹⁾ input high level voltage | | 2 | | 5.5V | | | V _{IL} | Input low level voltage | CMOS norts | -0.5 | | 0.35 V _{DD} | V | | V _{IH} | Input high level voltage | CMOS ports | 0.65 V _{DD} | | V _{DD} +0.5 | V | | V | Standard IO Schmitt trigger voltage hysteresis ⁽²⁾ | | 200 | | | mV | | V _{hys} | IO FT Schmitt trigger voltage hysteresis ⁽²⁾ | | 5% V _{DD} ⁽³⁾ | | | mV | | 1 | Input leakage current ⁽⁴⁾ | $V_{SS} \le V_{IN} \le V_{DD}$
Standard I/Os | | | ±1 | | | I _{lkg} | Imput leakage current V | V _{IN} = 5 V
I/O FT | | | 3 | μΑ | | R _{PU} | Weak pull-up equivalent resistor ⁽⁵⁾ | $V_{IN} = V_{SS}$ | 30 | 40 | 50 | kΩ | | R _{PD} | Weak pull-down equivalent resistor ⁽⁵⁾ | $V_{IN} = V_{DD}$ | 30 | 40 | 50 | kΩ | | C _{IO} | I/O pin capacitance | | | 5 | | pF | ^{1.} FT = Five-volt tolerant. - 4. Leakage could be higher than max. if negative current is injected on adjacent pins. - Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order). All I/Os are CMOS and TTL compliant (no software configuration required), their characteristics consider the most strict CMOS-technology or TTL parameters: #### For V_{IH}: - if V_{DD} is in the [2.00 V 3.08 V] range: CMOS characteristics but TTL included - if V_{DD} is in the [3.08 V 3.60 V] range: TTL characteristics but CMOS included #### For V_{II}: - if V_{DD} is in the [2.00 V 2.28 V] range: TTL characteristics but CMOS included - if V_{DD} is in the [2.28 V 3.60 V] range: CMOS characteristics but TTL included ^{2.} Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production. ^{3.} With a minimum of 100 mV. ### **Output driving current** The GPIOs (general purpose input/outputs) can sink or source up to \pm 0 mA, and sink \pm 20 mA (with a relaxed V_{OI}). In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 5.2*: - The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating I_{VDD} (see *Table 7*). - The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating I_{VSS} (see *Table 7*). ### **Output voltage levels** Unless otherwise specified, the parameters given in *Table 35* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*. All I/Os are CMOS and TTL compliant. Table 35. Output voltage characteristics | Symbol | Parameter | Conditions | Min | Max | Unit | | |-----------------------------------|---|---------------------------------|----------------------|-----|------|--| | V _{OL} ⁽¹⁾ | Output low level voltage for an I/O pin when 8 pins are sunk at same time | TTL port | | 0.4 | V | | | V _{OH} ⁽²⁾ | Output high level voltage for an I/O pin when 8 pins are sourced at same time | 2.7 V < V _{DD} < 3.6 V | V _{DD} -0.4 | | 1 V | | | V _{OL} (1) | Output low level voltage for an I/O pin when 8 pins are sunk at same time | CMOS port | | 0.4 | V | | | V _{OH} ⁽²⁾ | Output high level voltage for an I/O pin when 8 pins are sourced at same time | 2.7 V < V _{DD} < 3.6 V | 2.4 | | | | | V _{OL} ⁽¹⁾⁽³⁾ | Output low level
voltage for an I/O pin when 8 pins are sunk at same time | I _{IO} = +20 mA | | 1.3 | V | | | V _{OH} ⁽²⁾⁽³⁾ | Output high level voltage for an I/O pin when 8 pins are sourced at same time | 2.7 V < V _{DD} < 3.6 V | V _{DD} -1.3 | | V | | | V _{OL} ⁽¹⁾⁽³⁾ | Output low level voltage for an I/O pin when 8 pins are sunk at same time | I _{IO} = +6 mA | | 0.4 | V | | | V _{OH} ⁽²⁾⁽³⁾ | Output high level voltage for an I/O pin when 8 pins are sourced at same time | 2 V < V _{DD} < 2.7 V | V _{DD} -0.4 | | V | | The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 7* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}. ^{2.} The $I_{\rm IO}$ current sourced by the device must always respect the absolute maximum rating specified in *Table 7* and the sum of $I_{\rm IO}$ (I/O ports and control pins) must not exceed $I_{\rm VDD}$. ^{3.} Based on characterization data, not tested in production. ## Input/output AC characteristics The definition and values of input/output AC characteristics are given in *Figure 23* and *Table 36*, respectively. Unless otherwise specified, the parameters given in *Table 36* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*. Table 36. I/O AC characteristics⁽¹⁾ | MODEx[1:0]
bit value ⁽¹⁾ | Symbol | Parameter | Conditions | | Max | Unit | |--|-------------------------|--|---|----|--------------------|------| | | f _{max(IO)out} | Maximum frequency ⁽²⁾ | $C_L = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 3.6 \text{ V}$ | | 2 | MHz | | 10 | t _{f(IO)out} | Output high to low level fall time | C ₁ = 50 pF, V _{DD} = 2 V to 3.6 V | | 125 ⁽³⁾ | ns | | | t _{r(IO)out} | Output low to high level rise time | O _L = 30 μ1, ν _{DD} = 2 ν 10 3.0 ν | | 125 ⁽³⁾ | 115 | | | f _{max(IO)out} | Maximum frequency ⁽²⁾ | $C_L = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 3.6 \text{ V}$ | | 10 | MHz | | 01 | t _{f(IO)out} | Output high to low level fall time | C _I = 50 pF, V _{DD} = 2 V to 3.6 V | | 25 ⁽³⁾ | | | | t _{r(IO)out} | Output low to high level rise time | w to high | | 25 ⁽³⁾ | ns | | | | | $C_L = 30 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$ | | 50 | MHz | | | F _{max(IO)out} | Maximum frequency ⁽²⁾ | $C_L = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$ | | 30 | MHz | | | | | $C_L = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 2.7 \text{ V}$ | | 20 | MHz | | | | | $C_L = 30 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$ | | 5 ⁽³⁾ | | | 11 | t _{f(IO)out} | Output high to low level fall time | $C_L = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$ | | 8 ⁽³⁾ | | | | | | $C_L = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 2.7 \text{ V}$ | | 12 ⁽³⁾ | ns | | | | | $C_L = 30 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$ | | 5 ⁽³⁾ | 113 | | t _{r(IO)out} | | Output low to high level rise time | C _L = 50 pF, V _{DD} = 2.7 V to 3.6 V | | 8 ⁽³⁾ | | | | | | $C_L = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 2.7 \text{ V}$ | | 12 ⁽³⁾ | | | - | t _{EXTIpw} | Pulse width of
external signals
detected by the EXTI
controller | | 10 | | ns | The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a description of GPIO Port configuration register. 58/91 ^{2.} The maximum frequency is defined in Figure 23. ^{3.} Guaranteed by design, not tested in production. Figure 23. I/O AC characteristics definition ### 5.3.13 NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 34*). Unless otherwise specified, the parameters given in *Table 37* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*. Table 37. NRST pin characteristics | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |--------------------------------------|---|-------------------|------|-----|----------------------|------| | V _{IL(NRST)} ⁽¹⁾ | NRST Input low level voltage | | -0.5 | | 0.8 | V | | V _{IH(NRST)} ⁽¹⁾ | NRST Input high level voltage | | 2 | | V _{DD} +0.5 | v | | V _{hys(NRST)} | NRST Schmitt trigger voltage hysteresis | | | 200 | | mV | | R _{PU} | Weak pull-up equivalent resistor ⁽²⁾ | $V_{IN} = V_{SS}$ | 30 | 40 | 50 | kΩ | | V _{F(NRST)} ⁽¹⁾ | NRST Input filtered pulse | | | | 100 | ns | | V _{NF(NRST)} ⁽¹⁾ | NRST Input not filtered pulse | | 300 | | | ns | ^{1.} Guaranteed by design, not tested in production. ^{2.} The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (\sim 10% order). External reset circuit⁽¹⁾ NRST⁽²⁾ RPU FILTER STM32F10xxx ai14132b Figure 24. Recommended NRST pin protection - 2. The reset network protects the device against parasitic resets. - The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 37. Otherwise the reset will not be taken into account by the device. ### 5.3.14 TIM timer characteristics The parameters given in *Table 38* are guaranteed by design. Refer to *Section 5.3.12: I/O port characteristics* for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 38. TIMx⁽¹⁾ characteristics | Symbol | Parameter | Conditions | Min | Max | Unit | |------------------------|--|-------------------------------|--------|-------------------------|----------------------| | † (711.6) | Timer resolution time | | 1 | | t _{TIMxCLK} | | ^t res(TIM) | Timer resolution time | f _{TIMxCLK} = 72 MHz | 13.9 | | ns | | f _{EXT} | Timer external clock | | 0 | f _{TIMxCLK} /2 | MHz | | 'EXI | frequency on CH1 to CH4 | f _{TIMxCLK} = 72 MHz | 0 | 36 | MHz | | Res _{TIM} | Timer resolution | | | 16 | bit | | t | 16-bit counter clock period when internal clock is | | 1 | 65536 | t _{TIMxCLK} | | ^t COUNTER | selected | f _{TIMxCLK} = 72 MHz | 0.0139 | 910 | μs | | taay ooung | Maximum possible count | | | 65536 × 65536 | t _{TIMxCLK} | | t _{MAX_COUNT} | iviaximum possible count | f _{TIMxCLK} = 72 MHz | | 59.6 | s | ^{1.} TIMx is used as a general term to refer to the TIM1, TIM2, TIM3 and TIM4 timers. #### 5.3.15 Communications interfaces #### I²C interface characteristics Unless otherwise specified, the parameters given in *Table 39* are derived from tests performed under the ambient temperature, f_{PCLK1} frequency and V_{DD} supply voltage conditions summarized in *Table 9*. The STM32F103xx performance line I^2C interface meets the requirements of the standard I^2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present. The I²C characteristics are described in *Table 39*. Refer also to *Section 5.3.12: I/O port characteristics* for more details on the input/output alternate function characteristics (SDA and SCL). Table 39. I²C characteristics | Symbol | Parameter | Standard mode I ² C ⁽¹⁾ | | Fast mode I ² C ⁽¹⁾⁽²⁾ | | Unit | |--|---|---|------|--|--------------------|-------| | Symbol | Farameter | Min | Max | Min | Max | Oilit | | t _{w(SCLL)} | SCL clock low time | 4.7 | | 1.3 | | ше | | t _{w(SCLH)} | SCL clock high time | 4.0 | | 0.6 | | μs | | t _{su(SDA)} | SDA setup time | 250 | | 100 | | | | t _{h(SDA)} | SDA data hold time | 0(3) | | 0 ⁽⁴⁾ | 900 ⁽³⁾ | | | t _{r(SDA)} | SDA and SCL rise time | | 1000 | 20 + 0.1C _b | 300 | ns | | $\begin{matrix} t_{f(SDA)} \\ t_{f(SCL)} \end{matrix}$ | SDA and SCL fall time | | 300 | | 300 | | | t _{h(STA)} | Start condition hold time | 4.0 | | 0.6 | | | | t _{su(STA)} | Repeated Start condition setup time | 4.7 | | 0.6 | | μs | | t _{su(STO)} | Stop condition setup time | 4.0 | | 0.6 | | μS | | t _{w(STO:STA)} | Stop to Start condition time (bus free) | 4.7 | | 1.3 | | μS | | C _b | Capacitive load for each bus line | | 400 | | 400 | pF | ^{1.} Guaranteed by design, not tested in production. f_{PCLK1} must be higher than 2 MHz to achieve the maximum standard mode I²C frequency. It must be higher than 4 MHz to achieve the maximum fast mode I²C frequency. ^{3.} The maximum hold time of the Start condition has only to be met if the interface does not stretch the low period of SCL signal. ^{4.} The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL. Figure 25. I²C bus AC waveforms and measurement circuit 1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$. Table 40. SCL frequency $(f_{PCLK1} = 36 \text{ MHz.}, V_{DD} = 3.3 \text{ V})^{(1)(2)}$ | £ ((±1,=) | I2C_CCR value | |------------------------|-----------------------------| | f _{SCL} (kHz) | $R_P = 4.7 \text{ k}\Omega$ | | 400 | 0x801E | | 300 | 0x8028 | | 200 | 0x803C | | 100 | 0x00B4 | | 50 | 0x0168 | | 20 | 0x0384 | ^{1.} R_P = External pull-up resistance, $f_{SCL} = I^2C$ speed, For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application. #### SPI interface characteristics Unless otherwise specified, the parameters given in *Table 41* are derived from tests performed under the ambient temperature,
f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 9*. Refer to *Section 5.3.12: I/O port characteristics* for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO). Table 41. SPI characteristics⁽¹⁾ | Symbol | Parameter | Conditions | Min | Max | Unit | |--|-------------------------------------|---|---------------------|---------------------|---------| | f _{SCK} | SPI clock frequency | Master mode | 0 | 18 | MHz | | 1/t _{c(SCK)} | SFI Clock frequency | Slave mode | 0 | 18 | IVII IZ | | t _{r(SCK)}
t _{f(SCK)} | SPI clock rise and fall time | Capacitive load: C = 30 pF | | 8 | | | t _{su(NSS)} ⁽²⁾ | NSS setup time | Slave mode | 4 t _{PCLK} | | | | t _{h(NSS)} ⁽²⁾ | NSS hold time | Slave mode | 73 | | | | t _{w(SCKH)} (2)
t _{w(SCKL)} (2) | SCK high and low time | Master mode, f _{PCLK} = 36 MHz,
presc = 4 | 50 | 60 | | | | Data input setup time | SPI1 | 1 | | | | t _{su(MI)} (2) | Master mode | SPI2 | 5 | | | | t _{su(SI)} ⁽²⁾ | Data input setup time
Slave mode | | 1 | | | | + (2) | Data input hold time | SPI1 | 1 | | | | t _{h(MI)} (2) | Master mode | SPI2 | 5 | | ns | | t _{h(SI)} ⁽²⁾ | Data input hold time
Slave mode | | 3 | | | | t _{a(SO)} (2)(3) | Data output access | Slave mode, f _{PCLK} = 36 MHz,
presc = 4 | 0 | 55 | | | () | time | Slave mode, f _{PCLK} = 24 MHz | 0 | 4 t _{PCLK} | | | t _{dis(SO)} (2)(4) | Data output disable time | Slave mode | 10 | | | | t _{v(SO)} (2)(1) | Data output valid time | Slave mode (after enable edge) | | 25 | | | t _{v(MO)} ⁽²⁾⁽¹⁾ | Data output valid time | Master mode (after enable edge) | | 3 | | | t _{h(SO)} ⁽²⁾ | Data output hold time | Slave mode (after enable edge) | 25 | | | | t _{h(MO)} ⁽²⁾ | Data output hold time | Master mode (after enable edge) | 4 | | | ^{1.} Remapped SPI1 characteristics to be determined. ^{2.} Based on characterization, not tested in production. ^{3.} Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. ^{4.} Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z Figure 26. SPI timing diagram - slave mode and CPHA = 0 Figure 27. SPI timing diagram - slave mode and CPHA = $1^{(1)}$ 1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$. Figure 28. SPI timing diagram - master mode⁽¹⁾ 1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$. ## **USB** characteristics The USB interface is USB-IF certified (Full Speed). Table 42. USB startup time | Symbol | Parameter | Max | Unit | |-------------------------------------|------------------------------|-----|------| | t _{STARTUP} ⁽¹⁾ | USB transceiver startup time | 1 | μs | 1. Guaranteed by design, not tested in production. | Symbol | Parameter | Conditions | Min. ⁽¹⁾ | Max. ⁽¹⁾ | Unit | | |--------------------------------|--------------------------------------|--|---------------------|---------------------|-------|--| | Input levels | | | | | | | | V _{DD} | USB operating voltage ⁽²⁾ | | 3.0 ⁽³⁾ | 3.6 | V | | | V _{DI} ⁽⁴⁾ | Differential input sensitivity | I(USBDP, USBDM) | 0.2 | | | | | V _{CM} ⁽⁴⁾ | Differential common mode range | Includes V _{DI} range | 0.8 | 2.5 | V | | | V _{SE} ⁽⁴⁾ | Single ended receiver threshold | | 1.3 | 2.0 | | | | Output levels | | | | | | | | V _{OL} | Static output level low | R_L of 1.5 k Ω to 3.6 $V^{(5)}$ | | 0.3 | V | | | V _{OH} | Static output level high | R_L of 15 k Ω to $V_{SS}^{(5)}$ | 2.8 | 3.6 | \ \ \ | | Table 43. USB DC electrical characteristics - 1. All the voltages are measured from the local ground potential. - 2. To be compliant with the USB 2.0 full-speed electrical specification, the USBDP (D+) pin should be pulled up with a 1.5 k Ω resistor to a 3.0-to-3.6 V voltage range. - 3. The STM32F103xx USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7-to-3.0 V $\rm V_{DD}$ voltage range. - 4. Guaranteed by design, not tested in production. - 5. R_I is the load connected on the USB drivers Figure 29. USB timings: definition of data signal rise and fall time Table 44. USB: Full-speed electrical characteristics⁽¹⁾ | Symbol | Parameter | Conditions | Min | Max | Unit | | |------------------------|---------------------------------|--------------------------------|-----|-----|------|--| | Driver characteristics | | | | | | | | t _r | Rise time ⁽²⁾ | C _L = 50 pF | 4 | 20 | ns | | | t _f | Fall time ⁽²⁾ | C _L = 50 pF | 4 | 20 | ns | | | t _{rfm} | Rise/ fall time matching | t _r /t _f | 90 | 110 | % | | | V _{CRS} | Output signal crossover voltage | | 1.3 | 2.0 | V | | - 1. Guaranteed by design, not tested in production. - Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0). #### 5.3.16 CAN (controller area network) interface Refer to *Section 5.3.12: I/O port characteristics* for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX). #### 5.3.17 12-bit ADC characteristics Unless otherwise specified, the parameters given in *Table 45* are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 9*. Note: It is recommended to perform a calibration after each power-up. Table 45. ADC characteristics | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |----------------------------------|---|----------------------------|--|--------------------|--------------------|--------------------| | V_{DDA} | Power supply | | 2.4 | | 3.6 | V | | V _{REF+} | Positive reference voltage | | 2.4 | | V_{DDA} | V | | I _{VREF} | Current on the V _{REF} input pin | | | 160 ⁽¹⁾ | 220 ⁽¹⁾ | μΑ | | f _{ADC} | ADC clock frequency | | 0.6 | | 14 | MHz | | f _S ⁽²⁾ | Sampling rate | | 0.05 | | 1 | MHz | | £ (2) | External trigger frequency | f _{ADC} = 14 MHz | | | 823 | kHz | | f _{TRIG} ⁽²⁾ | | | | | 17 | 1/f _{ADC} | | V _{AIN} ⁽³⁾ | Conversion voltage range | | 0 (V _{SSA} or V _{REF} -
tied to ground) | | V _{REF+} | ٧ | | R _{AIN} ⁽²⁾ | External input impedance | | See Equation 1 and Table 46 | | | kΩ | | R _{ADC} ⁽²⁾ | Sampling switch resistance | | | | 1 | kΩ | | C _{ADC} ⁽²⁾ | Internal sample and hold capacitor | | | | 12 | pF | | + (2) | Calibration time | f _{ADC} = 14 MHz | 5.9 | | | μs | | t _{CAL} ⁽²⁾ | | | 83 | | | 1/f _{ADC} | | t _{lat} (2) | Injection trigger conversion latency | $f_{ADC} = 14 \text{ MHz}$ | | | 0.214 | μs | | lat | | | | | 3 ⁽⁴⁾ | 1/f _{ADC} | | t _{latr} (2) | Regular trigger conversion latency | $f_{ADC} = 14 \text{ MHz}$ | | | 0.143 | μs | | 'latr` ´ | | | | | 2 ⁽⁴⁾ | 1/f _{ADC} | | t _S (2) | Sampling time | $f_{ADC} = 14 \text{ MHz}$ | 0.107 | | 17.1 | μs | | ıs. ′ | | | 1.5 | | 239.5 | 1/f _{ADC} | | t _{STAB} ⁽²⁾ | Power-up time | | 0 | 0 | 1 | μs | | (2) | Total conversion time (including sampling time) | $f_{ADC} = 14 \text{ MHz}$ | 1 | | 18 | μs | | t _{CONV} ⁽²⁾ | | | 14 to 252 (t _S for sampling +12.5 for successive approximation) | | | 1/f _{ADC} | ^{1.} Based on characterization, not tested in production. ^{2.} Guaranteed by design, not tested in production. In devices delivered in VFQFPN and LQFP packages, V_{REF+} is internally connected to V_{DDA} and V_{REF-} is internally connected to V_{SSA}. Devices that come in the TFBGA64 package have a V_{REF+} pin but no V_{REF-} pin (V_{REF-} is internally connected to V_{SSA}), see *Table 5* and *Figure 6*. ^{4.} For external triggers, a delay of $1/f_{PCLK2}$ must be added to the latency specified in *Table 45*. ### Equation 1: R_{AIN} max formula: $$R_{AIN} < \frac{T_S}{f_{ADC} \times C_{ADC} \times ln(2^{N+2})} - R_{ADC}$$ The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution). Table 46. R_{AIN} max for $f_{ADC} = 14 \text{ MHz}^{(1)}$ | T _s (cycles) | t _S (µs) | R _{AIN} max (kΩ) | |-------------------------|---------------------|---------------------------| | 1.5 | 0.11 | 1.2 | | 7.5 | 0.54 | 10 | | 13.5 | 0.96 | 19 | | 28.5 | 2.04 | 41 | | 41.5 | 2.96 | 60 | | 55.5 | 3.96 | 80 | | 71.5 | 5.11 | 104 | | 239.5 | 17.1 | 350 | ^{1.} Based on characterization, not tested in production. Table 47. ADC accuracy - limited test conditions⁽¹⁾ (2) | Symbol | Parameter | Test conditions | Тур | Max ⁽³⁾ | Unit | |--------|------------------------------|--|------|--------------------|------| | ET | Total unadjusted error | f_{PCLK2} = 56 MHz,
f_{ADC} = 14 MHz, R_{AIN} < 10 kΩ,
V_{DDA} = 3 V to 3.6 V
T_A = 25 °C
Measurements made after
ADC calibration | ±1.3 | ±2 | | | EO | Offset error | | ±1 | ±1.5 | | | EG | Gain error | | ±0.5 | ±1.5 | LSB | | ED | Differential linearity error | | ±0.7 | ±1 | | | EL | Integral linearity error | | ±0.8 | ±1.5 | | ^{1.} ADC DC accuracy values are measured after internal calibration. 3. Based on characterization, not tested in production. ^{2.} ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the
limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in *Section 5.3.12* does not affect the ADC accuracy. ±3 ±1.5 | 1440 101 712 0 000 mas) | | | | | | | |-------------------------|------------------------------|---|------|--------------------|------|--| | Symbol | Parameter | Test conditions | Тур | Max ⁽⁴⁾ | Unit | | | ET | Total unadjusted error | f COMUL- | ±2 | ±5 | | | | EO | Offset error | f_{PCLK2} = 56 MHz,
f_{ADC} = 14 MHz, R_{AIN} < 10 kΩ, | ±1.5 | ±2.5 | | | | EG | Gain error | $V_{DDA} = 2.4 \text{ V to } 3.6 \text{ V}$ | ±1.5 | ±3 | LSB | | | ED | Differential linearity error | Measurements made after ADC calibration | ±1 | ±2 | | | | | | 712 0 Gailbration | | ſ | | | Table 48. ADC accuracy^{(1) (2) (3)} - 1. ADC DC accuracy values are measured after internal calibration. - Better performance could be achieved in restricted V_{DD}, frequency and temperature ranges. - 3. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 5.3.12 does not affect the ADC accuracy. - 4. Based on characterization, not tested in production. Integral linearity error Figure 30. ADC accuracy characteristics STM32F103xx Sample and hold ADC converter RADC⁽¹⁾ 12-bit converter Cparasitic V_T 0.6 V L±1 μA Cparasitic AINx Figure 31. Typical connection diagram using the ADC - 1. Refer to *Table 45* for the values of R_{AIN}, R_{ADC} and C_{ADC}. - 2. C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced. #### General PCB design guidelines Power supply decoupling should be performed as shown in *Figure 32* or *Figure 33*, depending on whether V_{REF+} is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip. 1. V_{REF+} and V_{REF-} inputs are available only on 100-pin packages. Figure 33. Power supply and reference decoupling (V_{REF+} connected to V_{DDA}) 1. V_{REF+} and V_{REF-} inputs are available only on 100-pin packages. ## 5.3.18 Temperature sensor characteristics Table 49. TS characteristics | Symbol | Parameter | Min | Тур | Max | Unit | |---------------------------------------|--|------|------|------|-------| | T _L ⁽¹⁾ | V _{SENSE} linearity with temperature | | ±1 | ±2 | °C | | Avg_Slope ⁽¹⁾ | Average slope | 4.0 | 4.3 | 4.6 | mV/°C | | V ₂₅ ⁽¹⁾ | Voltage at 25 °C | 1.34 | 1.43 | 1.52 | V | | t _{START} ⁽²⁾ | Startup time | 4 | | 10 | μs | | T _{S_temp} ⁽³⁾⁽²⁾ | ADC sampling time when reading the temperature | | | 17.1 | μs | - 1. Based on characterization, not tested in production. - 2. Guaranteed by design, not tested in production. - 3. Shortest sampling time can be determined in the application by multiple iterations. # 6 Package characteristics # 6.1 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Figure 34. VFQFPN36 6 x 6 mm, 0.5 mm pitch, package outline⁽¹⁾ Figure 35. Recommended footprint (dimensions in mm)⁽¹⁾⁽²⁾⁽³⁾ - 1. Drawing is not to scale. - 2. The back-side pad is not internally connected to the $\rm V_{SS}$ or $\rm V_{DD}$ power pads. - 3. There is an exposed die pad on the underside of the VFQFPN package. It should be soldered to the PCB. All leads should also be soldered to the PCB. Table 50. VFQFPN36 6 x 6 mm, 0.5 mm pitch, package mechanical data | Symbol | | millimeters | | | inches ⁽¹⁾ | | | |--------|-------|-------------|-------|--------|-----------------------|--------|--| | | Min | Тур | Max | Min | Тур | Max | | | A | 0.800 | 0.900 | 1.000 | 0.0315 | 0.0354 | 0.0394 | | | A1 | | 0.020 | 0.050 | | 0.0008 | 0.0020 | | | A2 | | 0.650 | 1.000 | | 0.0256 | 0.0394 | | | A3 | | 0.250 | | | 0.0098 | | | | b | 0.180 | 0.230 | 0.300 | 0.0071 | 0.0091 | 0.0118 | | | D | 5.875 | 6.000 | 6.125 | 0.2313 | 0.2362 | 0.2411 | | | D2 | 1.750 | 3.700 | 4.250 | 0.0689 | 0.1457 | 0.1673 | | | E | 5.875 | 6.000 | 6.125 | 0.2313 | 0.2362 | 0.2411 | | | E2 | 1.750 | 3.700 | 4.250 | 0.0689 | 0.1457 | 0.1673 | | | е | 0.450 | 0.500 | 0.550 | 0.0177 | 0.0197 | 0.0217 | | | L | 0.350 | 0.550 | 0.750 | 0.0138 | 0.0217 | 0.0295 | | | ddd | | 0.080 | | | 0.0031 | 1 | | ^{1.} Values in inches are converted from mm and rounded to 4 decimal digits. Figure 36. LFBGA100 - low profile fine pitch ball grid array package outline 1. Drawing is not to scale. Table 51. LFBGA100 - low profile fine pitch ball grid array package mechanical data | Dim. | | mm | | | inches ⁽¹⁾ | | |---------------------|-------|-------|-------|--------|-----------------------|--------| | Dim. | Min | Тур | Max | Min | Тур | Max | | Α | | | 1.700 | | | 0.0669 | | A1 | 0.270 | | | 0.0106 | | | | A2 | | 1.085 | | | 0.0427 | | | A3 | | 0.30 | | | 0.0118 | | | A4 | | | 0.80 | | | 0.0315 | | b | 0.45 | 0.50 | 0.55 | 0.0177 | 0.0197 | 0.0217 | | D | 9.85 | 10.00 | 10.15 | 0.3878 | 0.3937 | 0.3996 | | D1 | | 7.20 | | | 0.2835 | | | E | 9.85 | 10.00 | 10.15 | 0.3878 | 0.3937 | 0.3996 | | E1 | | 7.20 | | | 0.2835 | | | е | | 0.80 | | | 0.0315 | | | F | | 1.40 | | | 0.0551 | | | ddd | | | 0.12 | | | 0.0047 | | eee | | | 0.15 | | | 0.0059 | | fff | | | 0.08 | | | 0.0031 | | N (number of balls) | | • | 1 | 00 | • | • | ^{1.} Values in inches are converted from mm and rounded to 4 decimal digits. 74/91 Doc ID 13587 Rev 10 Dpad 0.37 mm Dsm 0.52 mm typ. (depends on solder mask registration tolerance Solder paste 0.37 mm aperture diameter Non solder mask defined pads are recommended 4 to 6 mils screen print Figure 37. Recommended PCB design rules (0.80/0.75 mm pitch BGA) Figure 38. LQFP100, 100-pin low-profile quad flat package outline⁽¹⁾ Figure 39. Recommended footprint⁽¹⁾⁽²⁾ - 1. Drawing is not to scale. - 2. Dimensions are in millimeters. Table 52. LQPF100, 100-pin low-profile quad flat package mechanical data | Cumbal | | millimeters | | inches ⁽¹⁾ | | | |--------|------|-------------|------|-----------------------|--------|--------| | Symbol | Тур | Min | Max | Тур | Min | Max | | Α | | | 1.6 | | | 0.063 | | A1 | | 0.05 | 0.15 | | 0.002 | 0.0059 | | A2 | 1.4 | 1.35 | 1.45 | 0.0551 | 0.0531 | 0.0571 | | b | 0.22 | 0.17 | 0.27 | 0.0087 | 0.0067 | 0.0106 | | С | | 0.09 | 0.2 | | 0.0035 | 0.0079 | | D | 16 | 15.8 | 16.2 | 0.6299 | 0.622 | 0.6378 | | D1 | 14 | 13.8 | 14.2 | 0.5512 | 0.5433 | 0.5591 | | D3 | 12 | | | 0.4724 | | | | E | 16 | 15.8 | 16.2 | 0.6299 | 0.622 | 0.6378 | | E1 | 14 | 13.8 | 14.2 | 0.5512 | 0.5433 | 0.5591 | | E3 | 12 | | | 0.4724 | | | | е | 0.5 | | | 0.0197 | | | | L | 0.6 | 0.45 | 0.75 | 0.0236 | 0.0177 | 0.0295 | | L1 | 1 | | | 0.0394 | | | | k | 3.5° | 0.0° | 7.0° | 3.5° | 0.0° | 7.0° | | ccc | | 0.08 | | | 0.0031 | • | ^{1.} Values in inches are converted from mm and rounded to 4 decimal digits. Figure 40. LQFP64, 64-pin low-profile quad flat package Figure 41. Recommended footprint⁽¹⁾⁽²⁾ - 1. Drawing is not to scale. - 2. Dimensions are in millimeters. Table 53. LQFP64, 64-pin low-profile quad flat package mechanical data | Dim | | mm | - | inches ⁽¹⁾ | | | | | |-------|------|----------------|--------------|-----------------------|--------|--------|--|--| | Dim. | Min | Тур | Max | Min | Тур | Max | | | | А | | | 1.60 | | | 0.0630 | | | | A1 | 0.05 | | 0.15 | 0.0020 | | 0.0059 | | | | A2 | 1.35 | 1.40 | 1.45 | 0.0531 | 0.0551 | 0.0571 | | | | b | 0.17 | 0.22 | 0.27 | 0.0067 | 0.0087 | 0.0106 | | | | С | 0.09 | | 0.20 | 0.0035 | | 0.0079 | | | | D | | 12.00 | | | 0.4724 | | | | | D1 | | 10.00 | | | 0.3937 | | | | | E | | 12.00 | | | 0.4724 | | | | | E1 | | 10.00 | | | 0.3937 | | | | | е | | 0.50 | | | 0.0197 | | | | | θ | 0° | 3.5° | 7° | 0° | 3.5° | 7° | | | | L | 0.45 | 0.60 | 0.75 | 0.0177 | 0.0236 | 0.0295 | | | | L1 | | 1.00 | | | 0.0394 | | | | | N | | Number of pins | | | | | | | | IN IN | | | | 64 | | | | | ^{1.} Values in inches are converted from mm and rounded to 4 decimal digits. Figure 42. TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package outline 1. Drawing is not to scale. Table 54. TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package mechanical data | Cumbal | | millimeters | | | inches ⁽¹⁾ | | |--------|-------|-------------|-------|--------|-----------------------|--------| | Symbol | Тур | Min | Max | Тур | Min | Max | | Α | | | 1.200 | | | 0.0472 | | A1 | | 0.150 | | | 0.0059 | | | A2 | 0.785 | | | 0.0309 | | | | A3 | 0.200 | | | 0.0079 | | | | A4 | | | 0.600 | | | 0.0236 | | b | 0.300 | 0.250 | 0.350 | 0.0118 | 0.0098 | 0.0138 | | D | 5.000 | 4.850 | 5.150 | 0.1969 | 0.1909 | 0.2028 | | D1 | 3.500 | | | 0.1378 | | | | E | 5.000 | 4.850 | 5.150 | 0.1969 | 0.1909 | 0.2028 | | E1 | 3.500 | | | 0.1378 | | | | е | 0.500 | | | 0.0197 | | | | F | 0.750 | | | 0.0295 | | | | ddd | 0.080 | | | | 0.0031 | | | eee | 0.150 | | | | 0.0059 | | | fff | | 0.050 | | | 0.0020 | | ^{1.} Values in inches are converted from mm and rounded to 4 decimal digits. **577** Pitch 0.5 mm D pad 0.27 mm Dsm 0.35 mm typ (depends on the soldermask registration tolerance) Solder paste 0.27 mm aperture diameter Figure 43. Recommended PCB design rules for pads (0.5 mm pitch BGA) - 1. Non solder
mask defined (NSMD) pads are recommended - 2. 4 to 6 mils solder paste screen printing process Figure 44. LQFP48, 48-pin low-profile quad flat package outline⁽¹⁾ Figure 45. Recommended footprint⁽¹⁾⁽²⁾ - 1. Drawing is not to scale. - 2. Dimensions are in millimeters. Table 55. LQFP48, 48-pin low-profile quad flat package mechanical data | Complete | millimeters | | | inches ⁽¹⁾ | | | |----------|-------------|-------|-------|-----------------------|--------|--------| | Symbol | Тур | Min | Max | Тур | Min | Max | | А | | | 1.600 | | | 0.0630 | | A1 | | 0.050 | 0.150 | | 0.0020 | 0.0059 | | A2 | 1.400 | 1.350 | 1.450 | 0.0551 | 0.0531 | 0.0571 | | b | 0.220 | 0.170 | 0.270 | 0.0087 | 0.0067 | 0.0106 | | С | | 0.090 | 0.200 | | 0.0035 | 0.0079 | | D | 9.000 | 8.800 | 9.200 | 0.3543 | 0.3465 | 0.3622 | | D1 | 7.000 | 6.800 | 7.200 | 0.2756 | 0.2677 | 0.2835 | | D3 | 5.500 | | | 0.2165 | | | | E | 9.000 | 8.800 | 9.200 | 0.3543 | 0.3465 | 0.3622 | | E1 | 7.000 | 6.800 | 7.200 | 0.2756 | 0.2677 | 0.2835 | | E3 | 5.500 | | | 0.2165 | | | | е | 0.500 | | | 0.0197 | | | | L | 0.600 | 0.450 | 0.750 | 0.0236 | 0.0177 | 0.0295 | | L1 | 1.000 | | | 0.0394 | | | | k | 3.5° | 0° | 7° | 3.5° | 0° | 7° | | CCC | | 0.080 | • | | 0.0031 | • | ^{1.} Values in inches are converted from mm and rounded to 4 decimal digits. ## 6.2 Thermal characteristics The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 9: General operating conditions on page 35*. The maximum chip-junction temperature, T_J max, in degrees Celsius, may be calculated using the following equation: $$T_J \max = T_A \max + (P_D \max \times \Theta_{JA})$$ #### Where: - T_A max is the maximum ambient temperature in °C, - Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W, - P_D max is the sum of P_{INT} max and $P_{I/O}$ max (P_D max = P_{INT} max + $P_{I/O}$ max), - P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power. P_{I/O} max represents the maximum power dissipation on output pins where: $$P_{I/O} \max = \Sigma (V_{OL} \times I_{OL}) + \Sigma ((V_{DD} - V_{OH}) \times I_{OH}),$$ taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application. Table 56. Package thermal characteristics | Symbol | Parameter | Value | Unit | |---------------|---|-------|------| | | Thermal resistance junction-ambient
LFBGA100 - 10 × 10 mm / 0.8 mm pitch | 44 | | | | Thermal resistance junction-ambient
LQFP100 - 14 × 14 mm / 0.5 mm pitch | 46 | | | Θ_{JA} | Thermal resistance junction-ambient
LQFP64 - 10 × 10 mm / 0.5 mm pitch | 45 | °C/W | | | Thermal resistance junction-ambient TFBGA64 - 5 × 5 mm / 0.5 mm pitch | 65 | C/VV | | | Thermal resistance junction-ambient
LQFP48 - 7 x 7 mm / 0.5 mm pitch | 55 | | | | Thermal resistance junction-ambient
VFQFPN 36 - 6 × 6 mm / 0.5 mm pitch | 18 | | #### 6.2.1 Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org. ### 6.2.2 Selecting the product temperature range When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Table 57: Ordering information scheme*. Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature. As applications do not commonly use the STM32F103xx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application. The following examples show how to calculate the temperature range needed for a given application. #### **Example 1: High-performance application** Assuming the following application conditions: Maximum ambient temperature $T_{Amax} = 82$ °C (measured according to JESD51-2), $I_{DDmax} = 50$ mA, $V_{DD} = 3.5$ V, maximum 20 I/Os used at the same time in output at low level with $I_{OL} = 8$ mA, $V_{OL} = 0.4$ V and maximum 8 I/Os used at the same time in output at low level with $I_{OL} = 20$ mA, $V_{OL} = 1.3$ V $P_{INTmax} = 50 \text{ mA} \times 3.5 \text{ V} = 175 \text{ mW}$ $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} + 8 \times 20 \text{ mA} \times 1.3 \text{ V} = 272 \text{ mW}$ This gives: P_{INTmax} = 175 mW and P_{IOmax} = 272 mW: $P_{Dmax} = 175 + 272 = 447 \text{ mW}$ Thus: P_{Dmax} = 447 mW Using the values obtained in *Table 56* T_{Jmax} is calculated as follows: For LQFP100, 46 °C/W $T_{Jmax} = 82 \, ^{\circ}C + (46 \, ^{\circ}C/W \times 447 \, mW) = 82 \, ^{\circ}C + 20.6 \, ^{\circ}C = 102.6 \, ^{\circ}C$ This is within the range of the suffix 6 version parts ($-40 < T_J < 105$ °C). In this case, parts must be ordered at least with the temperature range suffix 6 (see *Table 57: Ordering information scheme*). #### **Example 2: High-temperature application** Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range. Assuming the following application conditions: Maximum ambient temperature T_{Amax} = 115 °C (measured according to JESD51-2), I_{DDmax} = 20 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OI} = 8 mA, V_{OI} = 0.4 V $P_{INTmax} = 20 \text{ mA} \times 3.5 \text{ V} = 70 \text{ mW}$ $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} = 64 \text{ mW}$ This gives: P_{INTmax} = 70 mW and P_{IOmax} = 64 mW: $P_{Dmax} = 70 + 64 = 134 \text{ mW}$ Thus: P_{Dmax} = 134 mW Using the values obtained in $Table 56 T_{Jmax}$ is calculated as follows: For LQFP100, 46 °C/W $$T_{Jmax} = 115 \, ^{\circ}C + (46 \, ^{\circ}C/W \times 134 \, mW) = 115 \, ^{\circ}C + 6.2 \, ^{\circ}C = 121.2 \, ^{\circ}C$$ This is within the range of the suffix 7 version parts ($-40 < T_J < 125$ °C). In this case, parts must be ordered at least with the temperature range suffix 7 (see *Table 57: Ordering information scheme*). # 7 Ordering information scheme Table 57. Ordering information scheme xxx = programmed parts TR = tape and real For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office. **577** Although STM32F103x6 devices are not described in this datasheet, orderable part numbers that do not show the A internal code after temperature range code 6 or 7 should be referred to this datasheet for the electrical characteristics. The low-density datasheet only covers STM32F103x6 devices that feature the A code. # 8 Revision history Table 58. Document revision history | Date | Revision | Changes | |---------------|----------|---| | 01-jun-2007 | 1 | Initial release. | | | | Flash memory size modified in <i>Note 7</i> , <i>Note 4</i> , <i>Note 7</i> , <i>Note 8</i> and BGA100 pins added to <i>Table 5: Medium-density STM32F103xx pin definitions. Figure 3: STM32F103xx performance line LFBGA100 ballout</i> added. T _{HSE} changed to T _{LSE} in <i>Figure 20: Low-speed external clock source</i> | | | | AC timing diagram. V _{BAT} ranged modified in <i>Power supply schemes</i> . | | | | t _{SU(LSE)} changed to t _{SU(HSE)} in <i>Table 22: HSE 4-16 MHz oscillator</i> characteristics. I _{DD(HSI)} max value added to <i>Table 24: HSI oscillator</i> characteristics. | | | | Sample size modified and machine model removed in <i>Electrostatic</i> discharge (ESD). | | 20-Jul-2007 2 | 2 | Number of parts modified and standard reference updated in <i>Static latch-up</i> . 25 °C and 85 °C conditions removed and class name modified in <i>Table 33: Electrical sensitivities</i> . R _{PU} and R _{PD} min and max values added to <i>Table 34: I/O static characteristics</i> . R _{PU} min and max values added to <i>Table 37: NRST pin characteristics</i> . | | 20-001-2007 | ۷ | Figure 25: I ² C bus AC waveforms and measurement circuit and Figure 24: Recommended NRST pin protection corrected. | | | | Notes removed below Table 9, Table 37, Table 43. | | | | I _{DD} typical values changed in <i>Table 11: Maximum current consumption</i> in <i>Run and Sleep modes. Table 38: TIMx characteristics</i> modified. | | | | t _{STAB} , V _{REF+} value, t _{lat} and f _{TRIG} added to <i>Table 45: ADC</i> characteristics. | | | | In <i>Table 29: Flash memory endurance and data retention</i> , typical endurance and data retention for $T_A = 85$ °C added, data retention for $T_A = 25$ °C removed. | | | | V _{BG} changed to V _{REFINT} in <i>Table 12: Embedded internal reference voltage</i> . Document title changed. <i>Controller area network (CAN)</i> section modified. | | | | Figure 12: Power supply scheme modified. | | | | Features on page 1 list optimized. Small text changes. | Table 58. Document revision history (continued) | Date | Revision | Changes | |-------------|----------
--| | 18-Oct-2007 | 3 | STM32F103CBT6, STM32F103T6 and STM32F103T8 root part numbers added (see <i>Table 2: STM32F103xx medium-density device features and peripheral counts</i>) VFQFPN36 package added (see <i>Section 6: Package characteristics</i>). All packages are ECOPACK® compliant. Package mechanical data inch values are calculated from mm and rounded to 4 decimal digits (see <i>Section 6: Package characteristics</i>). <i>Table 5: Medium-density STM32F103xx pin definitions</i> updated and clarified. <i>Table 26: Low-power mode wakeup timings</i> updated. <i>T_A</i> min corrected in <i>Table 12: Embedded internal reference voltage</i> . <i>Note 2</i> added below <i>Table 22: HSE 4-16 MHz oscillator characteristics</i> . VESD(CDM) value added to <i>Table 32: ESD absolute maximum ratings</i> . <i>Note 3</i> added and V _{OH} parameter description modified in <i>Table 35: Output voltage characteristics</i> . <i>Note 1</i> modified under <i>Table 36: I/O AC characteristics</i> . <i>Equation 1</i> and <i>Table 46: R_{AIN} max for f_{ADC} = 14 MHz</i> added to <i>Section 5.3.17: 12-bit ADC characteristics</i> . VAIN: \s max, \tconv. \text{VERF+} min and \star axt modified, notes modified and \star added in <i>Table 45: ADC characteristics</i> . Vigure <i>30: ADC accuracy characteristics</i> updated. <i>Note 1</i> modified below Figure <i>31: Typical connection diagram using the ADC. Electrostatic discharge (ESD) on page 55</i> modified. Number of TIM4 channels modified in <i>Figure 1: STM32F103xx performance line block diagram.</i> Maximum current consumption <i>Table 31, Table 14</i> and <i>Table 15</i> updated. <i>Note 2</i> added. Nation at power-up / power-down. V _{FESD} value added in <i>Table 30: EMS characteristics</i> . Values corrected, note 2 modified and note 3 removed in <i>Table 30: EMS characteristics</i> . Vprog added to <i>Table 28: Flash memory characteristics</i> . Vprog added to <i>Table 28: Flash memory characteristics</i> . Vprog added to <i>Table 49: TS characteristics</i> . Ne _{ND} modified in <i>Table 29: Flash memory endurance and data retention</i> . T _{S. vrefint} added to <i>Table 12: Embedded internal reference voltage.</i> Handling of unused pins specified | Table 58. Document revision history (continued) | Date | Revision | Changes | |-------------|----------|--| | 22-Nov-2007 | 4 | Document status promoted from preliminary data to datasheet. The STM32F103xx is USB certified. Small text changes. Power supply schemes on page 13 modified. Number of communication peripherals corrected for STM32F103xx and number of GPIOs corrected for LQFP package in Table 2: STM32F103xx medium-density device features and peripheral counts. Main function and default alternate function modified for PC14 and PC15 in, Note 5 added and Remap column added in Table 5: Medium-density STM32F103xx pin definitions. VDD-VSs ratings and Note 1 modified in Table 6: Voltage characteristics, Note 1 modified in Table 7: Current characteristics. Note 1 and Note 2 added in Table 11: Embedded reset and power control block characteristics. Note 1 and Note 2 added in Table 11: Embedded reset and power control block characteristics. Note 1 and Note 2 added in Table 11: Embedded reset and power control block characteristics. Note 1 and Note 2 added in Table 11: Embedded reset and power control block characteristics. Note 1 and Note 2 added in Table 11: Embedded reset and power control block characteristics. Note 1 and Note 2 added in Table 11: Embedded reset and power control block characteristics. Note 1 and Note 2 added in Table 11: Embedded reset and power control block characteristics. Note 1 and Note 2 added in Table 11: Embedded reset and power control block characteristics. Note 1 and Note 2 added in Table 11: Embedded reset and power control block characteristics on page 41. Note 1 and Note 2 added in Table 11: Embedded reset and power control block characteristics. In the Internation of the Internation of Internation Intern | Table 58. Document revision history (continued) | Date | Revision | Changes | |-------------|----------|--| | 14-Mar-2008 | 5 | Figure 2: Clock tree on page 20 added. Maximum T _J value given in Table 8: Thermal characteristics on page 35. CRC feature added (see CRC (cyclic redundancy
check) calculation unit on page 9 and Figure 9: Memory map on page 31 for address). I _{DD} modified in Table 16: Typical and maximum current consumptions in Stop and Standby modes. ACC _{HSI} modified in Table 24: HSI oscillator characteristics on page 51, note 2 removed. P _D , T _A and T _J added, t _{prog} values modified and t _{prog} description clarified in Table 28: Flash memory characteristics on page 52. t _{RET} modified in Table 29: Flash memory endurance and data retention. V _{NF(NRST)} unit corrected in Table 37: NRST pin characteristics on page 59. Table 41: SPI characteristics on page 63 modified. I _{VREF} added to Table 45: ADC characteristics on page 67. Table 47: ADC accuracy - limited test conditions added. Table 48: ADC accuracy modified. LQFP100 package specifications updated (see Section 6: Package characteristics on page 72). Recommended LQFP100, LQFP 64, LQFP48 and VFQFPN36 footprints added (see Figure 39, Figure 41, Figure 45 and Figure 35). Section 6.2: Thermal characteristics on page 81 modified, Section 6.2.1 and Section 6.2.2 added. Appendix A: Important notes on page 81 removed. | | 21-Mar-2008 | 6 | Small text changes. Figure 9: Memory map clarified. In Table 29: Flash memory endurance and data retention: - N _{END} tested over the whole temperature range - cycling conditions specified for t _{RET} - t _{RET} min modified at T _A = 55 °C V ₂₅ , Avg_Slope and T _L modified in Table 49: TS characteristics. CRC feature removed. | | 22-May-2008 | 7 | CRC feature added back. Small text changes. Section 1: Introduction modified. Section 2.2: Full compatibility throughout the family added. I_{DD} at T_{A} max = 105 °C added to Table 16: Typical and maximum current consumptions in Stop and Standby modes on page 42. I_{DD_VBAT} removed from Table 21: Typical current consumption in Standby mode on page 47. Values added to Table 40: SCL frequency (f_{PCLK1} = 36 MHz., V_{DD} = 3.3 V) on page 62. Figure 26: SPI timing diagram - slave mode and CPHA = 0 on page 64 modified. Equation 1 corrected. t_{RET} at T_{A} = 105 °C modified in Table 29: Flash memory endurance and data retention on page 53. V_{USB} added to Table 43: USB DC electrical characteristics on page 66. Figure 46: LQFP100 P_{D} max vs. T_{A} on page 83 modified. Axx option added to Table 57: Ordering information scheme on page 84. | 88/91 Doc ID 13587 Rev 10 Table 58. Document revision history (continued) | Date | Revision | Changes | |-------------|----------|--| | 21-Jul-2008 | 8 | Power supply supervisor updated and V _{DDA} added to Table 9: General operating conditions. Capacitance modified in Figure 12: Power supply scheme on page 33. Table notes revised in Section 5: Electrical characteristics. Table 16: Typical and maximum current consumptions in Stop and Standby modes modified. Data added to Table 16: Typical and maximum current consumptions in Stop and Standby modes and Table 21: Typical current consumption in Standby mode removed. fHSE_ext modified in Table 20: High-speed external user clock characteristics on page 47. fPLL_IN modified in Table 27: PLL characteristics on page 52. Minimum SDA and SCL fall time value for Fast mode removed from Table 39: I ² C characteristics on page 61, note 1 modified. th(NSS) modified in Table 41: SPI characteristics on page 63 and Figure 26: SPI timing diagram - slave mode and CPHA = 0 on page 64. CADC modified in Table 45: ADC characteristics on page 67 and Figure 31: Typical connection diagram using the ADC modified. Typical TS_temp value removed from Table 49: TS characteristics on page 71. LQFP48 package specifications updated (see Table 55 and Table 45), Section 6: Package characteristics revised. Axx option removed from Table 57: Ordering information scheme on page 84. Small text changes. | | 22-Sep-2008 | 9 | STM32F103x6 part numbers removed (see <i>Table 57: Ordering information scheme</i>). Small text changes. <i>General-purpose timers (TIMx)</i> and <i>Advanced-control timer (TIM1) on page 15</i> updated. Notes updated in <i>Table 5: Medium-density STM32F103xx pin definitions on page 26. Note 2</i> modified below <i>Table 6: Voltage characteristics on page 34</i> , ΔV _{DDx} min and ΔV _{DDx} min removed. Measurement conditions specified in <i>Section 5.3.5: Supply current characteristics on page 38.</i> I _{DD} in standby mode at 85 °C modified in <i>Table 16: Typical and maximum current consumptions in Stop and Standby modes on page 42. General input/output characteristics on page 56</i> modified. f _{HCLK} conditions modified in <i>Table 30: EMS characteristics on page 54.</i> Θ _{JA} and pitch value modified for LFBGA100 package in <i>Table 56: Package thermal characteristics.</i> Small text changes. | Table 58. Document revision history (continued) | Date | Revision | Changes | |-------------|----------|--| | 23-Apr-2009 | 10 | I/O information clarified <i>on page 1</i> . Figure 3: STM32F103xx performance line LFBGA100 ballout modified. Figure 9: Memory map modified. Table 4: Timer feature comparison added. PB4, PB13, PB14, PB15, PB3/TRACESWO moved from Default column to Remap column in Table 5: Medium-density STM32F103xx pin definitions. PD for LFBGA100 corrected in Table 9: General operating conditions. Note modified in Table 13: Maximum current consumption in Run mode, code with data processing running from Flash and Table 15: Maximum current consumption in Sleep mode, code running from Flash or RAM. Table 20: High-speed external user clock characteristics and Table 21: Low-speed external user clock characteristics modified. Figure 17 shows a typical curve (title modified). ACCHSI max values modified in Table 24: HSI oscillator characteristics. TFBGA64 package added (see Table 54 and Table 42). Small text changes. | 90/91 Doc ID 13587 Rev 10 #### Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS
"AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2009 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com