Driver Transistors ### **NPN Silicon** ### **Features** - S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |---|------------------|--|------| | Collector – Emitter Voltage
MMBTA05L
MMBTA06L | V _{CEO} | 60
80 | Vdc | | Collector – Base Voltage MMBTA05L MMBTA06L | V _{CBO} | 60
80 | Vdc | | Emitter-Base Voltage | V _{EBO} | 4.0 | Vdc | | Collector Current – Continuous | Ic | 500 | mAdc | | Electrostatic Discharge | ESD | HBM Class 3B
MM Class C
CDM Class IV | | ### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |---|-----------------------------------|-------------|-------| | Total Device Dissipation FR-5
Board (Note 1) T _A = 25°C | P _D | 225 | mW | | Derate above 25°C | | 1.8 | mW/°C | | Thermal Resistance, Junction-to-Ambient | $R_{\theta JA}$ | 556 | °C/W | | Total Device Dissipation Alumina
Substrate, (Note 2) T _A = 25°C | P _D | 300 | mW | | Derate above 25°C | | 2.4 | mW/°C | | Thermal Resistance, Junction–to–Ambient | $R_{\theta JA}$ | 417 | °C/W | | Junction and Storage Temperature | T _J , T _{stg} | -55 to +150 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - 1. FR-5 = $1.0 \times 0.75 \times 0.062$ in. - 2. Alumina = $0.4 \times 0.3 \times 0.024$ in. 99.5% alumina. ### ON Semiconductor® ### http://onsemi.com SOT-23 CASE 318 STYLE 6 ### **MARKING DIAGRAMS** MMBTA05LT1 MMBTA06LT1, SMMBTA06L 1H, 1GM = Specific Device Code M = Date Code* = Pb–Free Package (Note: Microdot may be in either location) *Date Code orientation and/or overbar may vary depending upon manufacturing location. #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet. ### $\textbf{ELECTRICAL CHARACTERISTICS} \ (T_A = 25^{\circ}C \ unless \ otherwise \ noted)$ | Characteristic | | Symbol | Min | Max | Unit | |--|----------------------|-----------------------|------------|------------|------| | OFF CHARACTERISTICS | | · | | | | | Collector – Emitter Breakdown Voltage (Note 3) (I _C = 1.0 mAdc, I _B = 0) | MMBTA05L
MMBTA06L | V _(BR) CEO | 60
80 | _
_ | Vdc | | Emitter – Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$) | | V _{(BR)EBO} | 4.0 | - | Vdc | | Collector Cutoff Current
(V _{CE} = 60 Vdc, I _B = 0) | | I _{CES} | - | 0.1 | μAdc | | Collector Cutoff Current
$(V_{CB} = 60 \text{ Vdc}, I_E = 0)$
$(V_{CB} = 80 \text{ Vdc}, I_E = 0)$ | MMBTA05L
MMBTA06L | I _{CBO} | -
- | 0.1
0.1 | μAdc | | ON CHARACTERISTICS | | • | | | | | DC Current Gain (I _C = 10 mAdc, V_{CE} = 1.0 Vdc) (I _C = 100 mAdc, V_{CE} = 1.0 Vdc) | | h _{FE} | 100
100 | _
_ | _ | | Collector – Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 10 mAdc) | | V _{CE(sat)} | - | 0.25 | Vdc | | Base – Emitter On Voltage
(I _C = 100 mAdc, V _{CE} = 1.0 Vdc) | | V _{BE(on)} | - | 1.2 | Vdc | | SMALL-SIGNAL CHARACTERISTICS | | | | | • | | Current – Gain – Bandwidth Product (Note 4)
(I _C = 10 mA, V _{CE} = 2.0 V, f = 100 MHz) | | f _T | 100 | _ | MHz | ^{3.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%. 4. f_T is defined as the frequency at which $|h_{fe}|$ extrapolates to unity. ^{*}Total Shunt Capacitance of Test Jig and Connectors For PNP Test Circuits, Reverse All Voltage Polarities Figure 1. Switching Time Test Circuits Figure 2. Current Gain Bandwidth Product vs. Collector Current Figure 3. Capacitance Figure 4. Switching Time Figure 5. DC Current Gain vs. Collector Current Figure 6. Collector Emitter Saturation Voltage vs. Collector Current Figure 7. Base Emitter Saturation Voltage vs. Collector Current Figure 8. Base Emitter Turn-ON Voltage vs. Collector Current Figure 9. Saturation Region Figure 10. Base–Emitter Temperature Coefficient Figure 11. Safe Operating Area Figure 12. Safe Operating Area ### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |-----------------|---------------------|-----------------------| | MMBTA05LT1G | SOT-23
(Pb-Free) | 3000 / Tape & Reel | | NSVMMBTA05LT1G* | SOT-23
(Pb-Free) | 3000 / Tape & Reel | | MMBTA05LT3G | SOT-23
(Pb-Free) | 10,000 / Tape & Reel | | MMBTA06LT1G | SOT-23
(Pb-Free) | 3000 / Tape & Reel | | SMMBTA06LT1G* | SOT-23
(Pb-Free) | 3000 / Tape & Reel | | MMBTA06LT3G | SOT-23
(Pb-Free) | 10,000 / Tape & Reel | | SMMBTA06LT3G* | SOT-23
(Pb-Free) | 10,000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable. #### PACKAGE DIMENSIONS ### SOT-23 (TO-236) CASE 318-08 **ISSUE AP** #### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, - PROTRUSIONS, OR GATE BURRS | | MILLIMETERS | | | INCHES | | | |-----|-------------|------|------|--------|-------|-------| | DIM | MIN | NOM | MAX | MIN | NOM | MAX | | Α | 0.89 | 1.00 | 1.11 | 0.035 | 0.040 | 0.044 | | A1 | 0.01 | 0.06 | 0.10 | 0.001 | 0.002 | 0.004 | | b | 0.37 | 0.44 | 0.50 | 0.015 | 0.018 | 0.020 | | С | 0.09 | 0.13 | 0.18 | 0.003 | 0.005 | 0.007 | | D | 2.80 | 2.90 | 3.04 | 0.110 | 0.114 | 0.120 | | Е | 1.20 | 1.30 | 1.40 | 0.047 | 0.051 | 0.055 | | е | 1.78 | 1.90 | 2.04 | 0.070 | 0.075 | 0.081 | | L | 0.10 | 0.20 | 0.30 | 0.004 | 0.008 | 0.012 | | L1 | 0.35 | 0.54 | 0.69 | 0.014 | 0.021 | 0.029 | | HE | 2.10 | 2.40 | 2.64 | 0.083 | 0.094 | 0.104 | | θ | 0° | | 10° | 0° | | 10° | ### STYLE 6: PIN 1. BASE 2. EMITTER - COLLECTOR ### **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and (III) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative