Datasheet # 1-Kbit and 2-Kbit serial I2C bus EEPROMs UFDFPN8 (MC) DFN8 - 2 x 3 mm SO8N (MN) 150 mil width UFDFPN5 (MH) DFN5 - 1.7 x 1.4 mm | Product status link | |---------------------| | M24C01-W | | M24C02-W | | M24C01-R | | M24C02-R | | M24C02-F | ### **Features** - Compatible with following I²C bus modes: - 400 kHz - 100 kHz - Memory array: - 1 Kbit (128 byte) of EEPROM - 2 Kbit (256 byte) of EEPROM - Page size: 16 byte - · Single supply voltage: - M24C01/02-W: 2.5 V to 5.5 V M24C01/02-R: 1.8 V to 5.5 V - M24C02-F: - 1.7 V to 5.5 V - 1.6 V to 5.5 V (under temperature constraint) - Write: - Byte write within 5 ms - Page write within 5 ms - Operating temperature range: - from -40 °C up to +85 °C - · Random and sequential read modes - · Write protect of the whole memory array - Enhanced ESD/latch-Up protection - More than 4 million write cycles - More than 200-years data retention #### **Packages** Packages RoHS-compliant and Halogen-free - SO8N (ECOPACK2) - TSSOP8 (ECOPACK2) - UFDFPN8 (ECOPACK2) - UFDFPN5 (ECOPACK2) # **Description** The M24C01(C02) is a 1(2)-Kbit I^2 C-compatible EEPROM (electrically erasable programmable memory) organized as 128 (256) × 8 bits. The M24C01/02-W can be accessed with a supply voltage from 2.5 V to 5.5 V, the M24C01/02-R can be accessed with a supply voltage from 1.8 V to 5.5 V, and the M24C02-F can be accessed either with a supply voltage from 1.7 V to 5.5 V (over the full temperature range) or with an extended supply voltage from 1.6 V to 5.5 V under some restricted conditions. These devices operate with a maximum clock frequency of 400 kHz. Figure 1. Logic diagram Table 1. Signal names | Signal name | Function | Direction | |---------------------------|----------------|-----------| | E2, E1, E0 ⁽¹⁾ | Chip enable | Input | | SDA | Serial data | I/O | | SCL | Serial clock | Input | | WC | Write control | Input | | Vcc | Supply voltage | - | | V _{SS} | Ground | - | 1. Signal not connected in the DFN5 package. Figure 2. 8-pin package connections, top view 1. See Package information for package dimensions, and how to identify pin 1 DS9398 - Rev 7 page 2/41 Figure 3. UFDFPN5 (DFN5) package connections 1. Inputs E2, E1, E0 are not connected. Refer to Section 4.5 Device addressing for further explanations. DS9398 - Rev 7 page 3/41 # 2 Signal description ## 2.1 Serial clock (SCL) The signal applied on the SCL input is used to strobe the data available on SDA(in) and to output the data on SDA(out). # 2.2 Serial data (SDA) SDA is an input/output used to transfer data in or data out of the device. SDA(out) is an open drain output that may be wired-AND with other open drain or open collector signals on the bus. A pull-up resistor must be connected from serial data (SDA) to V_{CC} (Figure 11 indicates how to calculate the value of the pull-up resistor). ## 2.3 Chip enable (E2, E1, E0) (E2,E1,E0) input signals are used to set the value that is to be looked for on the three least significant bits (b3, b2, b1) of the 7-bit device select code. These inputs must be tied to V_{CC} or V_{SS} , as shown in Table 2. When not connected (left floating), these inputs are read as low (0). For the UFDFPN5 package, the (E2,E1,E0) inputs are not connected. # 2.4 Write control (WC) This input signal is useful for protecting the entire contents of the memory from inadvertent write operations. Write operations are disabled to the entire memory array when write control (\overline{WC}) is driven high. Write operations are enabled when write control (\overline{WC}) is either driven low or left floating. When write control (\overline{WC}) is driven high, device select and address bytes are acknowledged, data bytes are not acknowledged. # 2.5 V_{SS} (ground) V_{SS} is the reference for all signals, including the V_{CC} supply voltage. ## 2.6 Supply voltage (V_{CC}) ### 2.6.1 Operating supply voltage (V_{CC}) Prior to selecting the memory and issuing instructions to it, a valid and stable V_{CC} voltage within the specified $[V_{CC}(min), V_{CC}(max)]$ range must be applied (see Operating conditions in Section 8 DC and AC parameters). In order to secure a stable DC supply voltage, it is recommended to decouple the V_{CC} line with a suitable capacitor (usually of the order of 10 nF to 100 nF) close to the V_{CC}/V_{SS} package pins. This voltage must remain stable and valid until the end of the transmission of the instruction and, for a write instruction, until the completion of the internal write cycle (t_W). DS9398 - Rev 7 page 4/41 ### 2.6.2 Power-up conditions The V_{CC} voltage has to rise continuously from 0 V up to the minimum V_{CC} operating voltage (see Operating conditions in Section 8 DC and AC parameters). ### 2.6.3 Device reset In order to prevent inadvertent write operations during power-up, a power-on-reset (POR) circuit is included. At power-up, the device does not respond to any instruction until V_{CC} has reached the internal reset threshold voltage. This threshold is lower than the minimum V_{CC} operating voltage (see Operating conditions in Section 8 DC and AC parameters). When V_{CC} passes over the POR threshold, the device is reset and enters the standby power mode; however, the device must not be accessed until V_{CC} reaches a valid and stable DC voltage within the specified $[V_{CC}(min), V_{CC}(max)]$ range (see Operating conditions in Section 8 DC and AC parameters). In a similar way, during power-down (continuous decrease in V_{CC}), the device must not be accessed when V_{CC} drops below V_{CC} (min). When V_{CC} drops below the power-on-reset threshold voltage, the device stops responding to any instruction sent to it. ### 2.6.4 Power-down conditions During power-down (continuous decrease in V_{CC}), the device must be in the standby power mode (mode reached after decoding a stop condition, assuming that there is no internal write cycle in progress). DS9398 - Rev 7 page 5/41 # 3 Block diagram The block diagram of the device is described below. Figure 4. Block diagram DS9398 - Rev 7 page 6/41 # 4 Device operation The device supports the I^2C protocol. This is summarized in Figure 5. Any device that sends data on to the bus is defined to be a transmitter, and any device that reads the data to be a receiver. The device that controls the data transfer is known as the bus master, and the other as the slave device. A data transfer can only be initiated by the bus master, which also provides the serial clock for synchronization. The device is always a slave in all communications. SCL SDA SDA SDA START STOP Change Condition Condition SCL MSB ACK SDA START Condition SCL MSB SDA STOP Condition Figure 5. I²C bus protocol DS9398 - Rev 7 page 7/41 ## 4.1 Start condition Start is identified by a falling edge of serial data (SDA) while serial clock (SCL) is stable in the high state. A start condition must precede any data transfer instruction. The device continuously monitors (except during a write cycle) serial data (SDA) and serial clock (SCL) for a start condition. ## 4.2 Stop condition Stop is identified by a rising edge of serial data (SDA) while serial clock (SCL) is stable in the high state. A stop condition terminates communication between the device and the bus master. A read instruction that is followed by NoAck can be followed by a stop condition to force the device into the standby mode. A stop condition at the end of a write instruction triggers the internal write cycle. # 4.3 Data input During data input, the device samples serial data (SDA) on the rising edge of serial clock (SCL). For correct device operation, serial data (SDA) must be stable during the rising edge of serial clock (SCL), and the serial data (SDA) signal must change only when serial clock (SCL) is driven low. ## 4.4 Acknowledge bit (ACK) The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter, whether it be bus master or slave device, releases serial data (SDA) after sending eight bits of data. During the 9th clock pulse period, the receiver pulls serial data (SDA) low to acknowledge the receipt of the eight data bits. DS9398 - Rev 7 page 8/41 # 4.5 Device addressing To start communication between the bus master and the slave device, the bus master must initiate a Start condition. Following this, the bus master sends the device select code, shown in Table 2 (most significant bit first). Note: When using the DFN5 package: - The Ei pins are not accessible. - To properly communicate with the device, the E0, E1 and E2 bits must always be set to logic 0 for any operation. See Table 2. - No other I²C device using address 1010 xxxx (x = don't care) can be connected to the same bus. Table 2. Device select code | Package | Device type identifier ⁽¹⁾ | | | Chip Enable address | | | RW | | |----------------------|---------------------------------------|----|----|---------------------|----|----|----|----| | Fachage | b7 | b6 | b5 | b4 | b3 | b2 | b1 | b0 | | TSSOP8,SO8N, UFDFPN8 | 1 | 0 | 1 | 0 | E2 | E1 | E0 | R₩ | | DFN5 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | R₩ | ^{1.} The MSB, b7, is sent first. The 8th bit is the Read/Write bit (RW). This bit is set to 1 for read and 0 for write operations. If a match occurs on the device select code, the corresponding device gives an acknowledgement on serial data (SDA) during the 9th bit time. If the device does not match the device select code, it deselects itself from the bus, and goes into standby mode. DS9398 - Rev 7 page 9/41 # 5 Instructions ## 5.1 Write operations Following a start condition the bus master sends a device select code with the R/\overline{W} bit $(R\overline{W})$ reset to 0. The device acknowledges this, as shown in Figure 5, and waits for the address byte. The device responds to each address byte with an acknowledge bit, and then waits for the data byte. Table 3. Address byte | A7 A6 | A5 | A4 | A3 | A2 | A1 | A0 | |-------|----|----|----|----|----|----| |-------|----|----|----|----
----|----| When the bus master generates a stop condition immediately after a data byte Ack bit (in the "10th bit" time slot), either at the end of a byte write or a page write, the internal write cycle t_W is triggered. A stop condition at any other time slot does not trigger the internal write cycle. After the stop condition and the successful completion of an internal write cycle (t_W) , the device internal address counter is automatically incremented to point to the next byte after the last modified byte. During the internal write cycle, serial data (SDA) is disabled internally, and the device does not respond to any requests. If the write control input (\overline{WC}) is driven high, the write instruction is not executed and the accompanying data bytes are *not* acknowledged, as shown in Figure 6. DS9398 - Rev 7 page 10/41 ## 5.1.1 Byte write After the device select code and the address byte, the bus master sends one data byte. If the addressed location is write-protected, by write control (\overline{WC}) being driven high, the device replies with NoAck, and the location is not modified. If, instead, the addressed location is not write-protected, the device replies with Ack. The bus master terminates the transfer by generating a stop condition, as shown in Figure 5. Figure 6. Write mode sequences with $\overline{WC} = 0$ (data write enabled) $\overline{\text{WC}}$ ACK ACK ACK Dev Select Byte Write Byte address Data in Start Stop R/W $\overline{\mathsf{WC}}$ ACK ACK ACK ACK Page Write Dev Select Byte address Data in 2 Data in 3 Data in 1 Start R/W WC (cont'd) ACK ACK Page Write(cont'd) Data in N DS9398 - Rev 7 page 11/41 ### 5.1.2 Page write The page write mode allows up to 16 byte to be written in a single write cycle, provided that they are all located in the same page in the memory: that is, the most significant memory address bits, A8/A4, are the same. If more bytes are sent than fit up to the end of the page, a "roll-over" occurs, i.e. the bytes exceeding the page end are written on the same page, from location 0. The bus master sends from $\underline{1}$ to 16 byte of data, each of which is acknowledged by the device if write control (\overline{WC}) is low. If write control (\overline{WC}) is high, the contents of the addressed memory location are not modified, and each data byte is followed by a NoAck, as shown in Figure 6. After each transferred byte, the internal page address counter is incremented. The transfer is terminated by the bus master generating a stop condition. Page Write(cont'd) \overline{WC} ACK ACK NO ACK Byte Write Dev select Byte address Data in Stop Start R/W \overline{WC} ACK ACK NO ACK NO ACK Byte address Page Write Dev select Data in 1 Data in 2 Data in 3 Start R/W WC (cont'd) NO ACK NO ACK Figure 7. Write mode sequences with \overline{WC} = 1 (data write inhibited) DS9398 - Rev 7 page 12/41 Data in N Stop ### 5.1.3 Minimizing write delays by polling on ACK The maximum write time (t_w) is shown in Section 8 DC and AC parameters, but the typical time is shorter. To make use of this, a polling sequence can be used by the bus master. The sequence, as shown in Figure 8, is: - Initial condition: a write cycle is in progress. - Step 1: the bus master issues a Start condition followed by a device select code (the first byte of the new instruction). - Step 2: if the device is busy with the internal write cycle, no Ack is returned and the bus master goes back to step 1. If the device has terminated the internal write cycle, it responds with an Ack, indicating that the device is ready to receive the second part of the instruction (the first byte of this instruction having been sent during Step 1). Figure 8. Write cycle polling flowchart using ACK 1. The seven most significant bits of the device select code of a random read (bottom right box in the Figure 8) must be identical to the seven most significant bits of the device select code of the write (polling instruction in the Figure 8). DS9398 - Rev 7 page 13/41 ## 5.2 Read operations Read operations are performed independently of the state of the write control (WC) signal. After the successful completion of a read operation, the device internal address counter is incremented by one, to point to the next byte address. For the read instructions, after each byte read (data out), the device waits for an acknowledgement (data in) during the 9th bit time. If the bus master does not acknowledge during this 9th time, the device terminates the data transfer and switches to its standby mode after a stop condition. Figure 9. Read mode sequences Note: The seven most significant bits of the first device select code of a random read must be identical to the seven most significant bits of the device select code of the write. DS9398 - Rev 7 page 14/41 #### 5.2.1 Random address read A dummy write is first performed to load the address into this address counter (as shown in Figure 8) but without sending a stop condition. Then, the bus master sends another start condition, and repeats the device select code, with the \overline{RW} bit set to 1. The device acknowledges this, and outputs the contents of the addressed byte. The bus master must not acknowledge the byte, and terminates the transfer with a stop condition. #### 5.2.2 Current address read For the current address read operation, following a start condition, the bus master only sends a device select code with the R/W bit set to 1. The device acknowledges this, and outputs the byte addressed by the internal address counter. The counter is then incremented. The bus master terminates the transfer with a stop condition, as shown in Figure 8, without acknowledging the byte. ### 5.2.3 Sequential read This operation can be used after a current address read or a random address read. The bus master does acknowledge the data byte output, and sends additional clock pulses so that the device continues to output the next byte in sequence. To terminate the stream of bytes, the bus master must not acknowledge the last byte, and must generate a Stop condition, as shown in Figure 8. The output data comes from consecutive addresses, with the internal address counter automatically incremented after each byte output. After the last memory address, the address counter "rolls-over", and the device continues to output data from memory address 00h. Note: For device delivered in DFN5 package, after the last memory address (7Fh for a 1Kbit and FFh for a 2Kbit), the address counter doesn't roll-over to the memory address 00h. The next addresses and data bytes outputted are therefore undefined and not quarantee. The address counter contains meaningful address value only after a Random Address Read (with address value between 00h and 7Eh for 1Kb and FEh for 2 Kb) has been performed. DS9398 - Rev 7 page 15/41 Initial delivery state # 6 Initial delivery state The device is delivered with all the memory array bits set to 1 (each byte contains FFh). DS9398 - Rev 7 page 16/41 # 7 Maximum rating Stressing the device outside the ratings listed in Table 4 may cause permanent damage to the device. These are stress ratings only, and operation of the device at these, or any other conditions outside those indicated in the operating sections of this specification, is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Table 4. Absolute maximum ratings | Symbol | Parameter | Min. | Max. | Unit | |-------------------|---|--------------|------|------| | - | Ambient operating temperature | -40 | 130 | °C | | T _{STG} | Storage temperature | -65 | 150 | °C | | T _{LEAD} | Lead temperature during soldering | see note (1) | | °C | | I _{OL} | DC output current (SDA = 0) | _ | 5 | mA | | V _{IO} | Input or output range | -0.50 | 6.5 | V | | V _{CC} | Supply voltage | -0.50 | 6.5 | V | | V _{ESD} | Electrostatic pulse (human body model) ⁽²⁾ | _ | 3000 | V | Compliant with JEDEC Std J-STD-020 (for small body, Sn-Pb or Pb-free assembly), the ST ECOPACK 7191395 specification, and the European directive on Restrictions of Hazardous Substances (RoHS directive 2011/65/EU of July 2011). DS9398 - Rev 7 page 17/41 ^{2.} Positive and negative pulses applied on different combinations of pin connections, according to ANSI/ESDA/JEDEC JS-001 (C1=100 pF, R1=1500 Ω). # 8 DC and AC parameters This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device. Table 5. Operating conditions (voltage range W) | Symbol | Parameter | Min. | Max. | Unit | |-----------------|-------------------------------|------|------|------| | V _{CC} | Supply voltage | 2.5 | 5.5 | V | | T _A | Ambient operating temperature | -40 | 85 | °C | | f _C | Operating clock frequency | - | 400 | kHz | Table 6. Operating conditions (voltage range R) | Symbol | Parameter | Min. | Max. | Unit | |-----------------|-------------------------------|------|------|------| | V _{CC} | Supply voltage | 1.8 | 5.5 | V | | T _A | Ambient operating temperature | -40 | 85 | °C | | f _C | Operating clock frequency | - | 400 | kHz | Table 7. Operating conditions (voltage range F) | Symbol | Parameter | | Min. | | Max. | Unit | |-----------------|--------------------------------------|------|------|------|------|------| | V _{CC} | Supply voltage | 1.60 | 1.65 | 1.70 | 5.5 | V | | T _A | Ambient operating temperature: READ | -40 | -40 | -40 | 85 | °C | | 'A | Ambient operating temperature: WRITE | 0 | -20 | -40 | 85 | | | f _C | Operating clock frequency | - | - | - | 400 | kHz | Table 8. AC measurement conditions | Symbol | Parameter | Min. | Max. | Unit | |------------------|---|-----------------------|-----------------------|------| | C _{bus} | Load capacitance | 0 | 100 | pF | | - | SCL input rise/fall time, SDA input fall time | - | 50 | ns | | - | Input levels | 0.2 V _{CC} t | o 0.8 V
_{CC} | V | | - | Input and output timing reference levels | 0.3 V _{CC} t | o 0.7 V _{CC} | V | Figure 10. AC measurement I/O waveform DS9398 - Rev 7 page 18/41 # Table 9. Input parameters | Symbol | Parameter ⁽¹⁾ | Test condition | Min. | Max. | Unit | |-----------------|--------------------------------|---------------------------------------|------|------|------| | C _{IN} | Input capacitance (SDA) | - | - | 8 | pF | | C _{IN} | Input capacitance (other pins) | - | - | 6 | pF | | Z _L | Input impedance (Ei, WC) | V _{IN} < 0.3 V _{CC} | 15 | 70 | kΩ | | Z _H | | V _{IN} > 0.7 V _{CC} | 500 | - | kΩ | ^{1.} Evaluated by characterization – Not tested in production. ## Table 10. Cycling performance | Symbol | Parameter | Test condition | Max. | Unit | |---|---|--|--------------|-------------| | Novolo | Write evels and transa(1) | $T_A \le 25 ^{\circ}\text{C}, V_{CC}(\text{min}) < V_{CC} < V_{CC}(\text{max})$ | 4,000,000 | Write cycle | | Ncycle Write cycle endurance ⁽¹⁾ | T _A = 85 °C, V _{CC} (min) < V _{CC} < V _{CC} (max) | 1,200,000 | vville cycle | | ^{1.} A write cycle is executed when either a page write or a byte write instruction is decoded. ## Table 11. Memory cell data retention | Parameter | Test condition | Min. | Unit | |-------------------------------|------------------------|------|------| | Data retention ⁽¹⁾ | T _A = 55 °C | 200 | Year | ^{1.} The data retention behaviour is checked in production, while the 200-year limit is defined from characterization and qualification results. DS9398 - Rev 7 page 19/41 Table 12. DC characteristics (M24C01/02-W) | Symbol | Parameter | Test conditions (in addition to those in Table 5 and Table 8) | Min. | Max. | Unit | |---------------------------------|--------------------------------------|--|---------------------|---------------------|------| | ILI | Input leakage current (Ei, SCL, SDA) | $V_{IN} = V_{SS}$ or V_{CC} , device in standby mode | - | ± 2 | μA | | I _{LO} | Output leakage current | SDA in Hi-Z, external voltage applied on SDA: V_{SS} or V_{CC} | - | ± 2 | μA | | Icc | Supply current (Read) | $f_C = 400 \text{ kHz}$
2.5 V \le V_{CC} \le 5.5 V | - | 1 | mA | | I _{CC0} ⁽¹⁾ | Supply current (Write) | During t_W ,
2.5 V \leq V _{CC} \leq 5.5 V | - | 0.5 | mA | | I _{CC1} | Standby supply current | Device not selected ⁽²⁾ ,
V _{IN} = V _{SS} or V _{CC} , V _{CC} = 2.5 V | _ | 2 | μA | | icci | | Device not selected ⁽²⁾ ,
V _{IN} = V _{SS} or V _{CC} , V _{CC} = 5.5 V | - | 3 | μA | | V _{IL} | Input low voltage (SCL, SDA, WC) | - | -0.45 | 0.3 V _{CC} | V | | V _{IH} | Input high voltage (SCL, SDA, WC) | - | 0.7 V _{CC} | V _{CC} +1 | V | | V _{OL} | Output low voltage | I_{OL} = 2.1 mA, V_{CC} = 2.5 V or I_{OL} = 3 mA, V_{CC} = 5.5 V | - | 0.4 | V | ^{1.} Evaluated by characterization - Not tested in production. DS9398 - Rev 7 page 20/41 ^{2.} The device is not selected after power-up, after a read instruction (after the stop condition), or after the completion of the internal write cycle t_W (t_W is triggered by the correct decoding of a write instruction). Table 13. DC characteristics (M24C01/02-R) | Symbol | Parameter | Test conditions ⁽¹⁾ (in addition to those in Table 6 and Table 8) | Min. | Max. | Unit | |---------------------------------|---------------------------------------|--|----------------------|----------------------|------| | ILI | Input leakage current (Ei, SCL, SDA) | V _{IN} = V _{SS} or V _{CC} , device in standby mode | - | ± 2 | μA | | I _{LO} | Output leakage current | SDA in Hi-Z, external voltage applied on SDA: V_{SS} or V_{CC} | - | ± 2 | μА | | Icc | Supply current (Read) | $V_{CC} = 1.8 \text{ V}, f_c = 400 \text{ kHz}$ | - | 0.8 | mA | | I _{CC0} ⁽²⁾ | Supply current (Write) | During t_W
1.8 V \leq V _{CC} \leq 2.5 V | - | 0.5 | mA | | I _{CC1} | Standby supply current | Device not selected, ⁽³⁾ $V_{IN} = V_{SS} \text{ or } V_{CC}, V_{CC} = 1.8 \text{ V}$ | - | 1 | μA | | V. | Input low voltage (SCL, SDA, | 2.5 V ≤ V _{CC} | -0.45 | 0.3 V _{CC} | ., | | V _{IL} | WC) | V _{CC} < 2.5 V | | 0.25 V _{CC} | V | | V _{IH} | Input high voltage (SCL, SDA) | V _{CC} < 2.5 V | 0.75 V _{CC} | 6.5 | V | | VIH | Input high voltage (WC) | V _{CC} < 2.5 V | 0.75 V _{CC} | V _{CC} +0.6 | V | | V _{OL} | Output low voltage | I _{OL} = 0.7 mA, V _{CC} = 1.8 V | - | 0.2 | V | If the application uses the voltage range R device with 2.5 V ≤ Vcc ≤ 5.5 V and -40 °C < TA < +85 °C, refer to Table 12 instead of this table. DS9398 - Rev 7 page 21/41 ^{2.} Evaluated by characterization - Not tested in production. ^{3.} The device is not selected after power-up, after a read instruction (after the stop condition), or after the completion of the internal write cycle t_W (t_W is triggered by the correct decoding of a write instruction). Table 14. DC characteristics (M24C02-F) | Symbol | Parameter Test conditions ⁽¹⁾ (in addition to those in Table 7 and Table 8) | | Min. | Max. | Unit | |---------------------------------|---|--|----------------------|----------------------|------| | I _{LI} | Input leakage current | V _{IN} = V _{SS} or V _{CC} | _ | ± 2 | μA | | 'LI | (Ei, SCL, SDA) | device in Standby mode | _ | Ξ 2 | μΑ | | I _{LO} | Output leakage current | SDA in Hi-Z, external voltage applied on SDA: $V_{\mbox{\footnotesize SS}}$ or $V_{\mbox{\footnotesize CC}}$ | - | ± 2 | μA | | I _{CC} | Supply current (Read) $V_{CC} = 1.6 \text{ V or } 1.7 \text{ V}, f_c = 400 \text{ kHz}$ | | - | 0.8 | mA | | I _{CC0} ⁽²⁾ | Supply current (Write) | During t_W
$V_{CC} \le 1.8 \text{ V}$ | - | 0.5 | mA | | I _{CC1} | Standby supply current | Device not selected ⁽³⁾ ,
$V_{IN} = V_{SS}$ or V_{CC} , $V_{CC} \le 1.8$ V | - | 1 | μA | | \/ | Input low voltage (SCL, SDA, | 2.5 V ≤ V _{CC} | -0.45 | 0.3 V _{CC} | | | V _{IL} | WC) | V _{CC} < 2.5 V | -0.45 | 0.25 V _{CC} | V | | V _{IH} | Input high voltage (SCL, SDA) | V _{CC} < 2.5 V | 0.75 V _{CC} | 6.5 | V | | VIH | Input high voltage (WC) | V _{CC} < 2.5 V | 0.75 V _{CC} | V _{CC} +0.6 | V | | V _{OL} | Output low voltage | I _{OL} = 0.7 mA, V _{CC} = 1.8 V | - | 0.2 | V | ^{1.} If the application uses the voltage range F device with 2.5 V \leq V_{CC} \leq 5.5 V , refer to Table 12 instead of this table. DS9398 - Rev 7 page 22/41 ^{2.} Evaluated by characterization - Not tested in production. ^{3.} The device is not selected after power-up, after a read instruction (after the stop condition), or after the completion of the internal write cycle t_W (t_W is triggered by the correct decoding of a write instruction). Table 15. 400 kHz AC characteristics (I²C Fast-mode) | Symbol | Alt. | Parameter | Min. | Max. | Unit | |------------------------------------|---------------------|---|-------|------|------| | f _C | f _{SCL} | Clock frequency | - | 400 | kHz | | t _{CHCL} | t _{HIGH} | Clock pulse width high | 600 | - | ns | | t _{CLCH} | t _{LOW} | Clock pulse width low | 1300 | - | ns | | t _{QL1QL2} ⁽¹⁾ | t _F | SDA (out) fall time | 20(2) | 300 | ns | | t _{XH1XH2} | t _R | Input signal rise time | (3) | (3) | ns | | t _{XL1XL2} | t _F | Input signal fall time | (3) | (3) | ns | | t _{DXCH} | t _{SU:DAT} | Data in set up time | 100 | - | ns | | t _{CLDX} | t _{HD:DAT} | Data in hold time | 0 | - | ns | | t _{CLQX} ⁽⁴⁾ | t _{DH} | Data out hold time | 100 | - | ns | | t _{CLQV} ⁽⁵⁾ | t _{AA} | Clock low to next data valid (access time) | - | 900 | ns | | t _{CHDL} | t _{SU:STA} | Start condition setup time | 600 | - | ns | | t _{DLCL} | t _{HD:STA} | Start condition hold time | 600 | - | ns | | t _{CHDH} | t _{SU:STO} | Stop condition set up time | 600 | - | ns | | t _{DHDL} | t _{BUF} | Time between Stop condition and next Start condition | 1300 | - | ns | | t _W | t _{WR} | Write time | - | 5 | ms | | t _{NS} ⁽¹⁾ | - | Pulse width ignored (input filter on SCL and SDA) - single glitch | - | 100 | ns | - 1. Evaluated by characterization Not tested in production. - 2. With $C_L = 10 pF$. - 3. There is no min. or max. values for the input signal rise and fall times. It is however recommended by the l^2C specification that the input signal rise and fall times be more than 20 ns and less than 300 ns when $f_C < 400$ kHz. - 4. The min value for t_{CLQX} (data out hold time) of the M24xxx devices offers a safe timing to bridge the undefined region of the falling edge SCL. - 5. t_{CLQV} is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3 V_{CC} or 0.7 V_{CC} , assuming that $R_{bus} \times C_{bus}$ time constant is within the values specified in Figure 11. DS9398 - Rev 7 page 23/41 Table 16. 100 kHz AC characteristics (I²C standard-mode) | Symbol | Alt. | Parameter | Min. | Max. | Unit | |------------------------------------|---------------------|--|------|------|------| | f _C | f _{SCL} | Clock frequency | - | 100 | kHz | | t _{CHCL} | t _{HIGH} | Clock pulse width high | 4 | - | μs | | t _{CLCH} | t _{LOW} | Clock pulse width low | 4.7 | - | μs | | t _{XH1XH2} | t _R | Input signal rise time | - | 1 | μs | | t _{XL1XL2} | t _F | Input signal fall time | - | 300 | ns | | t _{QL1QL2} ⁽¹⁾ | t _F | SDA (out) fall time | - | 300 | ns | | t _{DXCH} | t _{SU:DAT}
| Data in setup time | 250 | - | ns | | t _{CLDX} | t _{HD:DAT} | Data in hold time | 0 | - | ns | | t _{CLQX} (2) | t _{DH} | Data out hold time | 200 | - | ns | | t _{CLQV} (3) | t _{AA} | Clock low to next data valid (access time) | - | 3450 | ns | | t _{CHDL} ⁽⁴⁾ | t _{SU:STA} | Start condition setup time | 4.7 | - | μs | | t _{DLCL} | t _{HD:STA} | Start condition hold time | 4 | - | μs | | t _{CHDH} | t _{SU:STO} | Stop condition setup time | 4 | - | μs | | t _{DHDL} | t _{BUF} | Time between Stop condition and next Start condition | 4.7 | - | μs | | t _W | t _{WR} | Write time | - | 5 | ms | | t _{NS} ⁽¹⁾ | - | Pulse width ignored (input filter on SCL and SDA), single glitch | - | 100 | ns | ^{1.} Evaluated by characterization - Not tested in production. 4. For a reStart condition, or following a write cycle. DS9398 - Rev 7 page 24/41 To avoid spurious start ands top conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of SDA. ^{3.} t_{CLQV} is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3 V_{CC} or 0.7 V_{CC} , assuming that the Rbus × Cbus time constant is within the values specified in Figure 11. Figure 11. Maximum R_{bus} value versus bus parasitic capacitance (C_{bus}) for an I^2C bus at maximum frequency $f_C = 400 \text{ kHz}$ Figure 12. AC waveforms DS9398 - Rev 7 page 25/41 # 9 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. # 9.1 UFDFPN5 (DFN5) package information UFDFPN5 is a 5-lead, 1.7 × 1.4 mm, 0.55 mm thickness, ultra thin fine pitch dual flat package. Figure 13. UFDFPN5 - Outline - 1. Maximum package warpage is 0.05 mm. - 2. Exposed copper is not systematic and can appear partially or totally according to the cross section. - 3. Drawing is not to scale. - 4. On the bottom side, pin 1 is identified by the specific pad shape and, on the top side, pin 1 is defined from the orientation of the marking. When reading the marking, pin 1 is below the upper left package corner. DS9398 - Rev 7 page 26/41 | Symbol | | millimeters | | inches | | | | |------------------|-------|-------------|-------|--------|--------|--------|--| | Symbol | Min | Тур | Max | Min | Тур | Max | | | A | 0.500 | 0.550 | 0.600 | 0.0197 | 0.0217 | 0.0236 | | | A1 | 0.000 | - | 0.050 | 0.0000 | - | 0.0020 | | | b ⁽¹⁾ | 0.175 | 0.200 | 0.225 | 0.0069 | 0.0079 | 0.0089 | | | D | 1.600 | 1.700 | 1.800 | 0.0630 | 0.0669 | 0.0709 | | | D1 | 1.400 | 1.500 | 1.600 | 0.0551 | 0.0591 | 0.0630 | | | E | 1.300 | 1.400 | 1.500 | 0.0512 | 0.0551 | 0.0591 | | | E1 | 0.175 | 0.200 | 0.225 | 0.0069 | 0.0079 | 0.0089 | | | X | - | 0.200 | - | - | 0.0079 | - | | | Y | - | 0.200 | - | - | 0.0079 | - | | | е | - | 0.400 | - | - | 0.0157 | - | | | L | 0.500 | 0.550 | 0.600 | 0.0197 | 0.0217 | 0.0236 | | | L1 | - | 0.100 | - | - | 0.0039 | - | | | k | - | 0.400 | - | - | 0.0157 | - | | Table 17. UFDFPN5 - Mechanical data # 9.1.1 UFDFPN5 recommended footprint Figure 14. UFDFPN5 - Recommended footprint 1. Dimensions are expressed in millimeters. DS9398 - Rev 7 page 27/41 ^{1.} Dimension b applies to plated terminal and is measured between 0.15 and 0.30mm from the terminal tip. ## 9.2 TSSOP8 package information This TSSOP is an 8-lead, 3 x 6.4 mm, 0.65 mm pitch, thin shrink small outline package. Figure 15. TSSOP8 - Outline 1. Drawing is not to scale. Table 18. TSSOP8 – Mechanical data | Cymbal | | millimeters | | inches ⁽¹⁾ | | | | |-------------------|-------|-------------|--------|-----------------------|--------|--------|--| | Symbol | Min. | Тур. | Max. | Min. | Тур. | Max. | | | Α | - | - | 1.200 | - | - | 0.0472 | | | A1 | 0.050 | - | 0.150 | 0.0020 | - | 0.0059 | | | A2 | 0.800 | 1.000 | 1.050 | 0.0315 | 0.0394 | 0.0413 | | | b | 0.190 | - | 0.300 | 0.0075 | - | 0.0118 | | | С | 0.090 | - | 0.200 | 0.0035 | - | 0.0079 | | | D ⁽²⁾ | 2.900 | 3.000 | 3.100 | 0.1142 | 0.1181 | 0.1220 | | | е | - | 0.650 | - | - | 0.0256 | - | | | E | 6.200 | 6.400 | 6.600 | 0.2441 | 0.2520 | 0.2598 | | | E1 ⁽³⁾ | 4.300 | 4.400 | 0.0177 | 0.1693 | 0.1732 | 0.1772 | | | L | 0.450 | 0.600 | 0.750 | 0.0181 | 0.0236 | 0.0295 | | | L1 | - | 1.000 | - | - | 0.0394 | - | | | k | 0° | - | 8° | 0° | - | 8° | | | aaa | - | - | 0.100 | - | - | 0.0039 | | ^{1.} Values in inches are converted from mm and rounded to four decimal digits. Note: The package top may be smaller than the package bottom. Dimensions D and E1 are determinated at the outermost extremes of the plastic body exclusive of mold flash, tie bar burrs, gate burrs and interleads flash, but including any mismatch between the top and bottom of plastic body. Measurement side for mold flash, protusions or gate burrs is bottom side. DS9398 - Rev 7 page 28/41 Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 mm per side ^{3.} Dimension "E1" does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25 mm per side. # 9.2.1 TSSOP8 recommended footprint Figure 16. TSSOP8 – Recommended footprint 1. Dimensions are expressed in millimeters. DS9398 - Rev 7 page 29/41 ## 9.3 SO8N package information This SO8N is an 8-lead, 4.9 x 6 mm, plastic small outline, 150 mils body width, package. Figure 17. SO8N - Outline Drawing is not to scale. Table 19, SO8N - Mechanical data | Cumbal | millimeters | | | inches ⁽¹⁾ | | | |-------------------|-------------|-------|-------|-----------------------|--------|--------| | Symbol | Min. | Тур. | Max. | Min. | Тур. | Max. | | Α | - | - | 1.750 | - | - | 0.0689 | | A1 | 0.100 | - | 0.250 | 0.0039 | - | 0.0098 | | A2 | 1.250 | - | - | 0.0492 | - | - | | b | 0.280 | - | 0.480 | 0.0110 | - | 0.0189 | | С | 0.100 | - | 0.230 | 0.0030 | - | 0.0091 | | D ⁽²⁾ | 4.800 | 4.900 | 5.000 | 0.1890 | 0.1929 | 0.1969 | | Е | 5.800 | 6.000 | 6.200 | 0.2283 | 0.2362 | 0.2441 | | E1 ⁽³⁾ | 3.800 | 3.900 | 4.000 | 0.1496 | 0.1535 | 0.1575 | | е | - | 1.270 | - | - | 0.0500 | - | | h | 0.250 | - | 0.500 | 0.0098 | - | 0.0197 | | k | 0° | - | 8° | 0° | - | 8° | | L | 0.400 | - | 1.270 | 0.0157 | - | 0.0500 | | L1 | - | 1.040 | - | - | 0.0409 | - | | CCC | - | - | 0.100 | - | - | 0.0039 | - 1. Values in inches are converted from mm and rounded to four decimal digits. - Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 mm per side - 3. Dimension "E1" does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25 mm per side. Note: The package top may be smaller than the package bottom. Dimensions D and E1 are determinated at the outermost extremes of the plastic body exclusive of mold flash, tie bar burrs, gate burrs and interleads flash, but including any mismatch between the top and bottom of plastic body. Measurement side for mold flash, protusions or gate burrs is bottom side. DS9398 - Rev 7 page 30/41 # 9.3.1 SO8N recommended footprint Figure 18. SO8N - Recommended footprint 1. Dimensions are expressed in millimeters. DS9398 - Rev 7 page 31/41 # 9.4 UFDFPN8 (DFN8) package information 2x aaa C This UFDFPN is a 8-lead, 2 x 3 mm, 0.5 mm pitch ultra thin profile fine pitch dual flat package. Pin #1 ID marking E Package UFDFN8 (package code ZW) A // ccc c A1 | C | | C | | Seating plane A3 Side view Figure 19. UFDFPN8 - Outline Top view - 1. Maximum package warpage is 0.05 mm. - 2. Exposed copper is not systematic and can appear partially or totally according to the cross section. - 3. Drawing is not to scale. - 4. The central pad (the area E2 by D2 in the above illustration) must be either connected to V_{SS} or left floating (not connected) in the end application. DS9398 - Rev 7 page 32/41 | Symbol | | millimeters | | inches ⁽¹⁾ | | | | |--------------------|-------|-------------|-------|-----------------------|--------|--------|--| | | Min | Тур | Max | Min | Тур | Max | | | Α | 0.450 | 0.550 | 0.600 | 0.0177 | 0.0217 | 0.0236 | | | A1 | 0.000 | 0.020 | 0.050 | 0.0000 | 0.0008 | 0.0020 | | | b ⁽²⁾ | 0.200 | 0.250 | 0.300 | 0.0079 | 0.0098 | 0.0118 | | | D | 1.900 | 2.000 | 2.100 | 0.0748 | 0.0787 | 0.0827 | | | D2 | 1.200 | - | 1.600 | 0.0472 | - | 0.0630 | | | Е | 2.900 | 3.000 | 3.100 | 0.1142 | 0.1181 | 0.1220 | | | E2 | 1.200 | - | 1.600 | 0.0472 | - | 0.0630 | | | е | - | 0.500 | - | - | 0.0197 | - | | | K | 0.300 | - | - | 0.0118 | - | - | | | L | 0.300 | - | 0.500 | 0.0118 | - | 0.0197 | | | L1 | - | - | 0.150 | - | - | 0.0059 | | | L3 | 0.300 | - | - | 0.0118 | - | - | | | aaa | - | - | 0.150 | - | - | 0.0059 | | | bbb | - | - | 0.100 | - | - | 0.0039 | | | ccc | - | - | 0.100 | - | - | 0.0039 | | | ddd | - | - | 0.050 | - | - | 0.0020 | | | eee ⁽³⁾ | - | - | 0.080 | - | - | 0.0031 | | Table 20. UFDFPN8 - Mechanical data - 1. Values in inches are converted from mm and rounded to four decimal digits. - 2. Dimension b applies to plated terminal and is measured between 0.15 and 0.30 mm from the terminal tip. - 3. Applied for exposed die paddle and terminals. Exclude embedding part of exposed die paddle from measuring. ## 9.4.1 UFDFPN8 recommended footprint Figure 20. UFDFPN8 - Recommended footprint 1. Dimensions are expressed in millimeters. DS9398 - Rev 7 page 33/41 # 10 Ordering information Table 21. Ordering information scheme P or G = RoHS compliant and halogen-free (ECOPACK2) 1. All packages are ECOPACK2 (RoHS-compliant and free of brominated, chlorinated and antimony-oxide flame retardants). Note: For a list of available options (memory, package, and so on) or for further information on any aspect of this device, contact your nearest ST sales office. Note: Parts marked as "ES", "E" or accompanied by an Engineering Sample
notification letter, are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. DS9398 - Rev 7 page 34/41 # **Revision history** Table 22. Document revision history | Date | Revision | Changes | |-------------|----------|--| | | | New M24C01/02 datasheet resulting from splitting the previous datasheet M24C08-x M24C04-x M24C02-x M24C01-x (revision 18) into separate datasheets. | | 17-Dec-2012 | 1 | Added part number M24C02-F. Updated ESD value in <i>Table 4</i> . | | | | Updated standby supply current values (ICCI) in Table 12, Table 13 | | | | and Table 14. | | 24-Sep-2013 | 2 | Added: Table10: Cycling performance Table7:Operatingconditions (voltage range F) and Table7:Operating conditions(voltagerange F, for all other devices) Updated: Features: supply voltage, write cycles and data retention Section1: Description Note (1)under Table4:Absolutemaximum ratings Table11: Memory celldata retention, Table12:DC characteristics (M24C01/02-W, devicegrade 6), Table 13: DC characteristics (M24C01/02-R device grade 6), Table 14: DC characteristics (M24C02-F, device grade 6), Table 21: Ordering information scheme Figure11: AC waveforms Renamed Figure 15and Table21. | | 06-Dec-2016 | 3 | Updated: Section 1: Description, noteson Table 4: Absolute maximum ratings, title of Table 7: Operating conditions (voltage range F), note 1 on Table 11: Memory cell data retention, Table 12: DC characteristics (M24C01/02-W, device grade 6), Table 13: DC characteristics (M24C01/02-R device grade 6), Table 14: DC characteristics (M24C02-F, device grade 6), Table 21: Ordering information scheme Removed Table7:Operatingconditions(voltage rangeF.forallotherdevices) Added Figure 14: SO8N – 3.9x4.9 mm, 8-lead plastic small outline, 150 mils body width, package recommended footprint, Engineering samples reference | | 05-Apr-2017 | 4 | Updated Section2.3:Chip Enable (E2,E1, E0), Section 4.5:Deviceaddressing, Section5.2.3: SequentialRead, Table22: Ordering informationscheme Added UFDFPN5 package in cover page and Section9.1:UFDFPN5(DFN5)package information | | 20-Apr-2017 | 5 | Updated: Figure 14: UFDFPN5 -5-lead, 1.7 × 1.4 mm, 0.55 mm thickness, ultra thin fine pitchdual flat package, no lead recommended footprint and Figure 20: UFDFPN8-8-lead, 2 × 3 mm, 0.5 mm pitch ultra thin profile fine pitch dual flat recommended footprint Note on Section 5.2.3: Sequential Read | | 02-Oct-2017 | 6 | Added reference to DFN8 and DFN5 in: Figure3: UFDFPN5(DFN5) package connections, Section 9.1:UFDFPN5(DFN5) package information, Section9.5:UFDFPN8 (DFN8) package information, Table22:Orderinginformationscheme | DS9398 - Rev 7 page 35/41 | Date | Revision | Changes | |-------------|----------|--| | 20-May-2022 | 7 | Updated: Section Features, Section 1 Description, Section 2.2 Serial data (SDA), Section 2.3 Chip enable (E2, E1, E0), Section 2.5 VSS (ground), Section 4.2 Stop condition, Section 4.5 Device addressing, Section 5.1.3 Minimizing write delays by polling on ACK, Section 5.2 Read operations, Section 9.1 UFDFPN5 (DFN5) package information, Section 9.3 SO8N package information, Section 9.2 TSSOP8 package information, Section 9.4 UFDFPN8 (DFN8) package information note in Figure 3 Figure 4. Block diagram Table 4. Absolute maximum ratings, Table 10. Cycling performance, Table 11. Memory cell data retention, Table 12. DC characteristics (M24C01/02-W), Table 13. DC characteristics (M24C01/02-R), Table 14. DC characteristics (M24C02-F), Table 15. 400 kHz AC characteristics (I²C standard-mode), Table 21. Ordering information scheme Removed PDIP8 package | DS9398 - Rev 7 page 36/41 # **Contents** | 1 | Des | cription | 1 | 2 | | | | | | | |---|--------|-----------------------------------|---|----|--|--|--|--|--|--| | 2 | Sigr | Signal description | | | | | | | | | | | 2.1 | Serial | clock (SCL) | 4 | | | | | | | | | 2.2 | Serial data (SDA) | | | | | | | | | | | 2.3 | Chip enable (E2, E1, E0) | | | | | | | | | | | 2.4 | Write | control (WC) | 4 | | | | | | | | | 2.5 | V _{SS} (g | ground) | 4 | | | | | | | | | 2.6 | Supply voltage (V _{CC}) | | | | | | | | | | | | 2.6.1 | Operating supply voltage (V _{CC}) | 4 | | | | | | | | | | 2.6.2 | Power-up conditions | 5 | | | | | | | | | | 2.6.3 | Device reset | 5 | | | | | | | | | | 2.6.4 | Power-down conditions | 5 | | | | | | | | 3 | Bloc | ck diagr | am | 6 | | | | | | | | 4 | Dev | ice ope | ration | 7 | | | | | | | | | 4.1 | Start condition | | | | | | | | | | | 4.2 | Stop condition | | | | | | | | | | | 4.3 | Data input | | | | | | | | | | | 4.4 | Acknowledge bit (ACK) | | | | | | | | | | | 4.5 | Device | e addressing | 9 | | | | | | | | 5 | Inst | ructions | s | 10 | | | | | | | | | 5.1 | 5.1 Write operations | | | | | | | | | | | | 5.1.1 | Byte write | 11 | | | | | | | | | | 5.1.2 | Page write | 12 | | | | | | | | | | 5.1.3 | Minimizing write delays by polling on ACK | 13 | | | | | | | | | 5.2 | Read | operations | 14 | | | | | | | | | | 5.2.1 | Random address read | 15 | | | | | | | | | | 5.2.2 | Current address read | 15 | | | | | | | | | | 5.2.3 | Sequential read | | | | | | | | | 6 | Initia | al delive | ery state | 16 | | | | | | | | 7 | Max | imum ra | ating | 17 | | | | | | | | 8 | DC a | and AC | parameters | 18 | | | | | | | | 9 | Pac | kage inf | formation | 26 | | | | | | | | | 9.1 | UFDFI | PN5 (DFN5) package information | 26 | | | | | | | | | | 9.1.1 | UFDFPN5 recommended footprint | 27 | | | | | | | Contents | Rev | vision | history | / | 35 | |-----|--------|----------|--------------------------------|----| | 10 | Orde | ering in | formation | 34 | | | | 9.4.1 | UFDFPN8 recommended footprint | 33 | | | 9.4 | UFDF | PN8 (DFN8) package information | 32 | | | | 9.3.1 | SO8N recommended footprint | 31 | | | 9.3 | SO8N | I package information | 30 | | | | 9.2.1 | TSSOP8 recommended footprint | 29 | | | 9.2 | TSSO | P8 package information | 28 | | | | | | | DS9398 - Rev 7 page 38/41 # **List of tables** | Table 1. | Signal names | . 2 | |-----------|---|-----| | Table 2. | Device select code | . 9 | | Table 3. | Address byte | 10 | | Table 4. | Absolute maximum ratings | 17 | | Table 5. | Operating conditions (voltage range W) | 18 | | Table 6. | Operating conditions (voltage range R) | 18 | | Table 7. | Operating conditions (voltage range F) | 18 | | Table 8. | AC measurement conditions | 18 | | Table 9. | Input parameters | 19 | | Table 10. | Cycling performance | 19 | | Table 11. | Memory cell data retention | 19 | | Table 12. | DC characteristics (M24C01/02-W) | 20 | | Table 13. | DC characteristics (M24C01/02-R) | 21 | | Table 14. | DC characteristics (M24C02-F) | 22 | | Table 15. | 400 kHz AC characteristics (I ² C Fast-mode) | 23 | | Table 16. | 100 kHz AC characteristics (I ² C standard-mode) | 24 | | Table 17. | UFDFPN5 - Mechanical data | 27 | | Table 18. | TSSOP8 – Mechanical data | 28 | | Table 19. | SO8N – Mechanical data | 30 | | Table 20. | UFDFPN8 - Mechanical data | 33 | | Table 21. | Ordering information scheme | 34 | | Table 22. | Document revision history | 35 | DS9398 - Rev 7 page 39/41 # **List of figures** | Figure 1. | Logic diagram | 2 | |--------------------------|--|--------| | Figure 2. | 8-pin package connections, top view | 2 | | Figure 3. | UFDFPN5 (DFN5) package connections | 3 | | Figure 4. | Block diagram | 6 | | Figure 5. | I ² C bus protocol | 7 | | Figure 6. | Write mode sequences with WC = 0 (data write enabled) | 11 | | Figure 7. | Write mode sequences with WC = 1 (data write inhibited) | 12 | | Figure 8. | Write cycle polling flowchart using ACK | 13 | | Figure 9. | Read mode
sequences | 14 | | Figure 10. | AC measurement I/O waveform | 18 | | Figure 11. | Maximum R_{bus} value versus bus parasitic capacitance (C_{bus}) for an I^2C bus at maximum frequency $f_C = 40$ | 00 kHz | | | | 25 | | Figure 12. | AC waveforms | | | Figure 13. | UFDFPN5 - Outline | 26 | | Figure 14. | UFDFPN5 - Recommended footprint | 27 | | Figure 15. | TSSOP8 – Outline | 28 | | Figure 16. | TSSOP8 – Recommended footprint | 29 | | Figure 17. | | 30 | | Figure 18. | SO8N – Outline | | | | SO8N – Outline | | | Figure 19. | | 31 | | Figure 19.
Figure 20. | SO8N - Recommended footprint | 31 | DS9398 - Rev 7 page 40/41 #### **IMPORTANT NOTICE - READ CAREFULLY** STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2022 STMicroelectronics - All rights reserved DS9398 - Rev 7 page 41/41